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Abstract 

Estimation of age is a crucial step for the identification of unknown 

individuals. Age is commonly assessed through macroscopic analytical 

methods based on the gross-examination of age degenerative changes in 

the skeleton. The choice of the methods relies on the taphonomic condition 

of the human remains and/or the skeletal element that is available. In cases 

of very fragmented bones, microscopic techniques remain one of the few 

approaches to estimate age. Thus, many histological age estimation 

methods have been developed for different bones and on different samples 

in the last forty years. Numerous intrinsic and extrinsic factors influence 

bone remodelling rates and have shown to affect the accuracy of 

histological aging methods. The present study investigates rib thin-sections 

from two Mediterranean samples, aiming to explore the applicability and 

reliability of histological methods in estimating age within these samples. 

Standard ribs were obtained from males and females (N = 88, Mean 

age = 60, SD = 17.90) from two samples, Cretans (Greece) and Greek-

Cypriots (Republic of Cyprus). The costal elements were processed 

histologically according to standard protocols and thirteen raw and 

composite histomorphometric parameters (frequency number of intact and 

fragmentary osteons, total osteons, osteon population densities – including 

OPD(I) and OPD(F) – cortical area, total area, endosteal area, relative 

cortical area, osteon area, osteon perimeter and osteon circularity) were 

assessed.  

Intra- and inter-observer errors were examined. Due to the 

fragmented nature of the costal elements, sampling error was calculated as 

a means to explore whether the histological variables vary among six 

different topographical locations along the rib length. A validation study was 

carried out by applying four existing histological age prediction equations 

on the entire dataset and on the sub-datasets (sex and samples separately) 

in order to verify whether population-specific formulae are required for the 

Mediterranean samples. The relationship between the histological variables 

and age, as well as sex and samples, was determined through several 

statistical tests. Lastly, simple and multiple regression analyses were 

performed testing all possible combinations of variables. The best models 
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were finally selected according to prediction power and goodness of fit 

indicators.  

The results from intra- and inter-observer errors indicated that most 

of the histological parameters achieved high levels of repeatability. The 

preliminary outcome from the sampling error pilot study suggested low 

variability among the six thin-sections from each rib. According to the 

validation study, three of the four age prediction equations resulted in high 

underestimation of age, indicating that population-specific formulae are 

needed to provide more accurate age estimates. Most of the histological 

variables showed a statistically significant correlation with age with some 

differences observed by sex and by sample. Forty-one models were 

generated concluding that osteon densities along with rib and osteon 

measurements formulae produced the most accurate results. The best 

model generated from the entire dataset included OPD and osteon 

circularity with a standard error of the estimate of 10.45 years.  When sex 

and samples were separated, the best model selected included OPD and 

osteon perimeter producing a standard error of the estimate of 8 years for 

Cypriots.  

This research demonstrates that quantitative bone histology is a 

feasible method to estimate age on the Mediterranean samples obtaining 

errors rates that are in accordance with macroscopic ageing techniques. 

Inter-population variation in remodeling rates is suggested; however, the 

inclusion of other bones presenting different remodelling dynamics (such as 

femora) is recommended to further explore this hypothesis. This study 

contributes to the creation of population-specific standards for Cretans and 

Cypriots. 
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Chapter 1 : INTRODUCTION 

Only fools and the dead never change their opinions 

James R. Lowell 

 

One of the main tasks of the physical anthropologist is to gather 

anthropological information from decomposed human remains. Age estimation is an 

essential step in the creation of the biological profile of an unknown individual in 

forensic settings.  It is also critical for the construction of population demographics 

from the bioarchaeological context. Whether we are searching for a clearer 

physiological understanding of skeletal age related changes in bone micro- and 

macro-anatomy or the specific goal is to create methods for the practitioners to 

apply, the anthropologist needs a full understanding of the nature, distribution and 

timing of biological processes related to skeletal age changes.  

The interpretation of how age indicators are manifested in the skeleton is 

crucial due to complex physiological processes during growth, maturation and later 

in adulthood making the association between age markers and individual´s 

chronological age imperfectly connected (Garvin et al., 2012). A useful age indicator 

(trait or process) should present a unidirectional and predictable change with age, 

demonstrate a strong correlation to chronological age and vary consistently across 

individuals and among populations (Scientific Working Group for Forensic 

Anthropology, 2010). As expected, this is not the case for most of the age markers 

used in age estimation methods (Mays, 2015). Along the years, the scientific 

community has worked tirelessly on the development of age estimation techniques. 

This work has also included the testing and improvement of existing age prediction 

methods (Stout et al., 1996).  

Once growth has ceased, the skeleton continues to preserve and maintain its 

functional and material properties but undergoes a progressive degeneration over 

time. This process can be assessed both by the naked-eye and/or by the aid of a 

microscope. The combination of both analytical approaches — macroscopic and 

microscopic methods — may produce more accurate age estimates (Aiello and 

Molleson, 1993; Stout et al., 1994). Ultimately, the preference of analytical method is 

down to the discretion of the investigator, based on equipment available, the skeletal 

element analysed and its state of preservation, and the nature of the question to be 

answered and the accuracy of the methods. 
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Macroscopic methods using gross-examination of degenerative changes on 

bones have been widely used since they are easy to apply and do not require 

specific equipment (e.g. Todd, 1920; Lovejoy et al., 1985a; Isçan et al., 1984a, b). 

However, the macroscopic approach is considered subjective and wide age ranges 

are generally produced for individuals older than 50 years of age (Christensen et al., 

2014). Moreover, the exposure of the age markers to taphonomic processes may 

invalidate their observation, and thus, precluding them from use (Cappella et al., 

2017).  

On the other hand, the histological approach was first applied to estimate age 

on dry bone in the mid- 1960s demonstrating that it could be reliably used for aging 

unknown individuals (Kerley, 1965). Since then, many histological aging methods 

have been developed (e.g. Ahlqvist and Damsten, 1969; Stout et al., 1994; Maat et 

al., 2006; Han et al., 2009). As discussed in Chapter 2, the physiological basis of 

bone remodelling consists of the replacement of older bone and the formation of 

new bone carried out by the coupled and coordinated activity of bone cells 

(osteoclasts and osteoblasts) referred to as bone multicellular unit (BMU) or bone 

remodelling units (Parfitt, 1979). Of the microscopic features formed by remodelling 

events, secondary osteonal structures densities are strongly correlated to age, 

increasing with age and removing all evidence of the primary bone commonly seen 

in young individuals (Stout and Paine, 1992). In summary, age-related bone loss is 

caused by an imbalance in resorption and formation which accounts for remodelling 

occurring on the endosteal surface resulting in cortical thinning, and an intra-cortical 

remodelling imbalance in the Haversian canal surface (constituent feature of the 

osteonal structure) eliciting higher porosity and a decline in bone mineral density 

(Russo et al., 2006). Hence, definable age related microstructural changes can be 

quantified allowing the expert to establish a relationship between the biological 

processes and chronological age (Streeter, 2012).  

An important technical aspect of the application of microscopic method is that 

specialised training and equipment are necessary for the preparation and 

assessment of bone thin-sections (Crowder et al., 2012). Several techniques have 

been proposed and are still being tested and revised in order to improve 

methodological aspects of the production of bone histological slides (e.g. 

Beauchesne and Saunders, 2006; De Boer, Aarents and Maat, 2013). Additionally, 

taphonomic processes can also affect the microscopic analysis of the remains. Post-
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mortem changes have an effect on bone microstructures such as bacteria entering 

the bone via its porous network and expanding differently throughout the cortex 

(Bell, 2012). Although common in archaeological context, understanding diagenetic 

processes in forensic cases may also help to identify changes observed in the 

cross-section and their subsequent interpretation.  

As discussed in Chapter 3 and 4, other limitations in the application of 

histological methods must be taken into consideration. For example, sampling area 

seems to play an important role due to inconsistencies resulting from different 

topographical locations within the same bone (e.g. higher remodeling rates on 

muscle attachment areas) or intra- and inter-individual variability in bone 

microstructure (Mulhern, 2000; Pfeiffer et al., 1995; Pfeiffer et al., 2006).   

The first issue relates to the fact that as a result of the normal aging process, 

the endosteal diaphyseal area is resorbed, and consequently, most of the 

techniques developed using long bones are limited and focused on the 

subperiosteal area (Kerley, 1965; Maat et al., 2006). The question of whether the 

average periosteal remodeling may be an accurate indicator of the individual´s age 

presents a methodological concern. This issue is prominent when a large cortical 

area needs to be interpreted, as occurs with the femur, and specific sampling areas 

within the same cross-section have to be selected (Martin et al., 2015). To 

overcome these sampling error issues, ribs can be used instead since a full 

interpretation of the cortex is doable due to their small cortical areas.   

The second argument relates to different remodelling rates observed in bones 

from the same skeleton since weight and non-weight bearing skeletal elements have 

different mechanical and metabolic responses; consequently, variation in 

remodelling dynamics might be expected (Mulhern, 2000; Chan et al., 2007). 

Regardless of the skeletal element used, bone microstructures have shown different 

degrees of variability and different types of correlation to age (decrease, increase or 

lack of association) (Barer and Jowsey, 1967; Pfeiffer, 1998; Kim et al., 2007), 

suggesting that intra- and inter-individual variation exist and must be considered 

when developing histological age estimation methods. Moreover, inter-population 

variation must be accounted for intrinsic and extrinsic factors such as physical 

activity, nutrition and pathology – among others –  may alter bone turnover rates 

(Robling and Stout, 2008).  Additionally, remodelling rates do not occur at a 

predictive rate through time and the mentioned factors may have an impact on 
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normal bone physiology, further increasing the variability within and among  

chronological/ geographical populations (Thompson and Gunness-Hey, 1981; 

Weinstein and Bell, 1988; Cho et al., 2006).  

Some studies have focused on applying existing histological aging formulae 

on target samples not related to the reference population reporting different levels of 

accuracy and reliability in the estimated ages.  An early study performed by  Fangwu 

(1983) applied Kerley´s American age prediction formula (Kerley, 1965) on Modern 

Chinese femora sample, reporting errors greater than ± 10 years from real age, 

suggesting so the necessity of population-specific formula.  

Based on all these factors, the histomorphological approach has been 

employed to estimate age exploring different bones and different populations 

(Ahlqvist and Damsten, 1969; Drusini and Businaro, 1990; Ericksen, 1991; Stout 

and Paine, 1992; Cho et al., 2002). As mentioned earlier, aging techniques should 

include age indicators represented and distributed evenly among different 

geographical samples. As covering the entire age range of variation among humans 

seems to be a complicated objective (Milner and Boldsen, 2012), the development 

of population-specific standards is encouraged not only in relation to aging methods, 

but also towards gaining insights into the relation between remodeling, internal 

biological mechanisms and age. Over the last two decades, there has been an 

increment in research focusing on estimating age on advanced age samples due to 

the increasing life expectancy of recent human population (Ice, 2003). 

Moreover, sex related differences might also be manifested on bone 

microstructure features. Remodelling rates seem to increase after menopause, 

triggering the differences between women and men of the same age (Oursler et al., 

2008; Robling and Stout, 2008). There is still an open debate as to whether sex 

differences can actually be discerned through the histological approach and to what 

extent they will bias the overall accuracy of age estimation methods since some 

studies have reported sex differences while others have not (e.g. Kerley, 1965; 

Ericksen, 1991). 

Lastly, it is important to mention intrinsic methodological issues related to 

aging old individuals. Some histological variables present limitations to age 

individuals over 50-60 years old since the correlation between the parameters and 

age seems to weaken as age advances (e.g. osteon population densities) (Stout 
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and Crowder, 2012). Although it may vary depending on the remodelling rate of the 

population and the bone under study, there is a need to explore alternative 

histological parameters (alone or in combination) and to assess the impact of elderly 

individuals in microscopic techniques (Trammell and Kroman, 2013; Goliath et al., 

2016).  

In order to determine whether bones are of forensic significance, the expert 

needs to examine the remains through the application of appropriate scientific 

methods and analyse the contextual clues that can lead to a medicolegal 

investigation (Krogman and Isçan, 1986; Schultz, 2012). In the forensic field where 

the age estimates may fulfil specific requirements imposed by the legal setting, the 

choice of the method requires further considerations. Scientific methods must be 

tested, standardised  and error rates known to ensure accurate results that are 

particularly relevant for court cases (Christensen and Crowder, 2009). Histology has 

been recommended as one of the aging methods that achieves acceptable error 

levels although mostly suitable for individuals under 40 (Ritz-Timme et al., 2000). 

Both in archaeological and forensic contexts the ultimate goal is to produce 

estimated ages as accurate as possible, and to enable that, development of new 

methods with proper research design and adequate statistical approaches must be 

implemented.  

Regarding the statistical analysis, regression analysis is commonly used to 

estimate age although the systematic under and over–estimation of young and old 

individuals, respectively, remains problematic (Nawrocki, 2010). Furthermore, the 

inclusion of more parameters in the equation can lead to lower inaccuracy and 

higher prediction power, but the side effect is that the model increases in complexity 

in order to fit that specific sample and most likely will not fit the overall population 

(www.minitab.com). In practicality, a problem arising from adding more variables to 

the aging formula is the introduction of human error due to greater experience being 

required for the accurate observation and interpretation of age indicators/variables. 

Therefore, intra- and inter-observer error must be assessed to ensure the methods´ 

validity (Christensen et al., 2014). In this case, the complexity of the technique and 

the experience of the practitioner play a crucial role. All these issues are 

contemplated in Chapter 5 and Chapter 6. 
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1.1 Research design and research questions 

The present research aims to provide new insights in cortical microstructural 

changes related to age based on a sample of individuals from Mediterranean origin 

(N = 88, Mean age = 60, SD = 17.90). The procedures and research questions for 

this study are (refer to Figure 4.11): 

1. Intra and inter-observer error analysis will be evaluated in order to assess 

the agreement and repeatability of the method considering the variables 

under examination; an assessment of the possible bias introduced by the 

same and different observers will be carried out.  

2. An assessment of the possible error introduced by different sampling areas 

along the length of the rib to understand their impact on age estimation 

techniques. 

3. Through the application of existing population-specific formulae, a validation 

study will be performed to test the accuracy of four microscopic methods to 

estimate age on the Mediterranean sample/s. The methods performance will 

clarify if Mediterranean population-specific formulae are ultimately required. 

4. The relationship between histological variables and age as well as the 

relationship between variables and other factors such as sex and samples 

will be examined though several statistical tests. Once the relationship is 

established, the results from this assessment will be considered for the 

generation of regression formulae and to determine the best combination of 

parameters. 

5. The most accurate aging equations based on prediction power based on all 

previous gathered information will be selected. 

The fragmented nature of ribs makes costal element prone to breakage and 

identification of sampling area becomes an arduous and sometimes impossible task. 

A pilot study was performed to explore the impact of topographical location along 

the length of the rib and explore how different sampling locations may or may not 

have an effect on the histomorphometric variables and on the estimation of age 

(García-Donas et al., 2016). 

As noted above, inter-population variability has been reported and histological 

methods could decrease in accuracy depending on the sample under study and the 

method applied (Bouvier and Ubelaker, 1977). The accuracy, reliability and 
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magnitude of errors of four existing aging methods were evaluated. Reference 

sample demographics such as age and sex distributions, ethnicity and statistical 

approaches were considered in the evaluation of the performance of each method. 

Before developing the age estimation technique for the sample under study, 

the relationship between the histological parameters and age needed to be 

understood. Several statistical approaches were used to determine these 

correlations. It is recommended to examine other effects that can be attributable to 

other factors rather than age (e.g. sex and samples origin). This step helps to 

determine which parameters differ significantly between groups and whether their 

inclusion in the regression equations is meaningful (Nawrocki, 2010). A priory, the 

comparison of the two samples composing the study sample (Cretans and Cypriots) 

could yield some interesting remodelling patterns as they share similar culture, 

dietary habits and climate. 

To date, there has not been any study using histology to estimate age on a 

southern European population. Having taken into account the mean age of the 

sample, it is imperative to explore age changes in the senile ages and interpret the 

relationship of age physiological changes and other pathologies associated to the 

elderly (e.g. osteoporosis associated to postmenopausal women (Parfitt, 1979).  

Ultimately, this research aims to generate a method to estimate age for 

Mediterranean forensic and bio-archaeological burials. At first, a wide range of 

models were generated with all possible combination of variables. Based on the 

observed differences between sexes and samples, group specific formulae were 

developed. For the application of histological methods, certain level of experience in 

microscopy is required. The method reliability due to data collection and the nature 

of the parameters has been questioned (Lynnerup et al., 1998; Crowder, 2005), and 

thus, intra and inter-observer errors are assessed not only to examine agreement 

between observers, but also as a criterion for model inference considering the 

method repeatability for future applications. Finally, the more accurate age 

prediction models were selected according to prediction power, accuracy, feasibility 

and reliability.  
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Chapter 2 : BONE ANATOMY, BONE BIOLOGY AND BONE 

MICROSTRUCTURE 

The main topic of this research is based on the understanding of bone 

histological microstructures related to aging processes and age estimation. In view 

of interpreting the microstructures observed on the available samples, bone biology 

and physiology needs to be clearly understood.  Bone is a multifunctional tissue that 

changes and adapts metabolically and mechanically in response to the demands of 

the organism throughout one´s life (Burr and Akkus, 2013). This chapter presents an 

extended review in biology, physiology and turnover of bone both as an organ and 

as a tissue at the macro and micro-structural levels. 

2.1 A brief history of bone anatomy and biology  

Bone anatomy has represented a magnificent tool for paleo-anatomists, 

biologists, and physical anthropologists because skeletal features survive harsh 

environmental conditions (Schoenau et al., 2004; Schaefer and Black, 2005; Travan 

et al., 2015).  

Skeletal anatomic knowledge traditionally comes from gross examination of 

bone by the naked eye.  This includes metric assessment and detailed 

understanding of outer skeletal features and their range of variability (White and 

Folkens, 2005). The microscopic observation introduced in the 17th century enabled 

scientists to study microstructure of bone tissue allowing the understanding of the 

components of bone matrix and bone cells, as well as the interactions between 

them. Since then, the knowledge about this field has evolved considerably (Lanyon 

1993; Noble and Reeve, 2000; Maggiano, Maggiano, Tiesler et al., 2016).  

Martin and Burr (1989) summarised how scientists started perceiving bone 

microstructure four centuries ago. Clopton Havers (1657-1702) was not the first 

naturalist to recognise the porous nature of bones, but he was indeed the first one 

able to describe in detail the microscopic structure and organization of bone as a 

tissue. Among his findings, he inferred bone as a composite material made of 

inorganic and organic particles with parallel strings and plates that were arranged 

longitudinally around the medullary cavity in a tubular fashion. The tubular features 

found in secondary osteons are known as Haversian systems and are named after 

Havers. The pores observed in the cortical bone were assumed not to be vascular, 
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although Havers accurately thought that veins were going through the marrow to 

provide blood supply. According to him, the lamellae (thin plates of bone matrix) did 

not run consistently through the length and/or the diameter of bone but instead, 

different types of hard tissue were described to define the transition from cortical to 

trabecular bone (Martin and Burr, 1989). His contemporary Van Leeuwenhoeck 

(1632-1723) defined the different types of pores by their size and their longitudinal 

arrangement which would be summarised today in features that we recognise as 

osteocytes, primary and secondary osteons, canaliculi and resorption spaces. More 

complicated physiological processes were initially understood from the studies 

driven by Alexander Monro (1697-1767). This pathologist developed a theory based 

on the microscopic structure of bone matrix being able to explain the changes that 

bone undergoes during growth and throughout life, giving a first insight of the 

processes that would be later called modelling and remodelling. He was also the 

first to adequately defined bone loss both in the medullary cavity and in cortical bone 

describing formation and resorption processes related to aging. The scientist John 

Howship (1781-1841) identified large spaces in cortical bone as a result of the 

resorption process, giving the name to the microstructure known as Howship´s 

lacunae (Martin and Burr, 1989).  

Once the existence of the Haversian canals was established, the discussion 

shifted to the identification and definition of lamellae in bone. Through staining 

methods, the organization of bone by the alternation of layers of concentric lamellae 

with variable degrees of thickness was finally demonstrated (Du Hamel, 1700-1782). 

Further experiments allowed Lieutaud (1703-1780) to eventually define the laminae 

of bone and the compact fibers constituted in an irregular arrangement (Martin and 

Burr, 1989).  

In the 19th century, Todd and co-worker were able to define the structure of 

secondary osteons and lamellae partly due to the advances in bone microscopy and 

histological preparation of bone (Todd and Bowman, 1857). Tomes and De Morgan 

(1853) provided new insights on how resorption and formation activity would remove 

pre-existing older bone and replace it with new tissue as a natural process. The 

function of secondary osteons, other bone microstructures, and bone formation was 

then understood through their functional properties related to mechanical stress. 

Gebhardt (1905) discussed in detail the function of osteonal bone, where osteons 

were arranged in specific patterns with different angles of lamellae orientation in 
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order to bear stress trajectories (with fibers in spiral fashion). He also pointed out the 

differences in arrangement for both trabecular and cortical bone. Further findings 

about bone modelling and remodelling processes and their impact on bone 

microstructures would be revealed in the 20th century as it will be presented later in 

this chapter. 

The work carried out by scientists of the 17th-19th centuries and later studies 

have allowed us to reach a level of comprehensive understanding of bone 

microanatomy that far exceeds past expectations specific to bone anatomy.  Insights 

towards understanding bone gross anatomy and its characteristics as an organ will 

be briefly presented. Next, skeletal microanatomy via histological assessment and 

the theory about bone as a tissue covering its histological level, composition, 

microstructure and function will be discussed (Table 2.1). 

Table 2.1 Hierarchical levels of integration of bone micro-anatomical tissue (adapted 

from Francillon-Vieillot et al., 1990). 

Order of structure/ level of 
integration 

Scale (approx.) Characteristics of the order 

First order: 
ANATOMICAL level 

1 m - 1 mm 

Bone and tooth morphology and 
relationships; vascular orientation in 
compact bone, and trabeculae in spongy 
bone 

Second order: 
HISTOLOGICAL level 

1 mm -100 μm 
Orientation, size and number of bone 
trabeculae; size and number of vascular 
canals; extracellular matrices structure 

Third order: 
CYTOLOGICAL level 

100 μm - 1 μm 
Details of cells and extracellular matrices; 
orientation, quantity, organization and 
relationship 

Fourth order: 
MOLECULAR level 

1 μm - 10 nm 
Organic and mineral components: chemical 
and biophysical organization 

2.2. Bone as an organ: gross anatomy, functions and associated tissues 

within the skeletal system 

The human body works as a whole in order to accomplish all the necessary 

activities for its survival and maintenance. The body systems (integumentary, 

skeletal-muscular; nervous, endocrine; cardiovascular and lymphatic; respiratory, 

digestive and urinary; reproductive) perform specific functions necessary for the 

living organism (Faller and Schuenke, 2004). In anatomy, complementarity of 
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structure and function is essential as every particularity of the body structures 

(shape, size, composition) are designed to execute specific activities and help the 

body function (Thibodeau and Patton, 2007). In such, a hierarchical organization, 

different subdivisions within the body are found. 

Regarding the skeletal system from the anatomical level to the tissue level, we 

encounter bones as the basic element of the skeleton and bone tissue as the 

primary level of organization that forms the bones (Table 2.1). Bones are classified 

in different types accounting for a variety of shapes, sizes and structures depending 

on the area of the body that they are located, and therefore, on the function that they 

perform (Gray et al., 2005). 

Movement is one of the main functions of bones within the skeletal system. 

One can imagine the body without the skeletal structure and the incapacity of 

movement due to the lack of structural support. Bones are deemed to provide this 

scaffolding not only for maintaining the posture but also contributing to shape, 

alignment and positioning of the body parts. Movement is possible due the 

coordination of bones and skeletal muscles via the tendons and ligaments 

connecting bone to muscle and bone to bone, respectively. Skeletal muscles are 

composed of muscular fibers and connective tissue strongly interlinked. Muscle cells 

are covered by a connective tissue membrane (endomysium) and grouped by 

skeletal muscle fibers (fascicles) bounded together by another tougher connective 

tissue called the perimysium. Muscle fibers are surrounded as a whole by a sheath 

called epimysium (Faller and Schuenke, 2004). All three tissue membranes form a 

continuum with bone attaching muscle to bone ensuring a hard and firm support for 

the bones during contraction. The last layer consists of a dense collagen connective 

tissue sheath (muscle fascia) which encloses the muscle and allows interaction with 

other related structures. Structurally, bones and skeletal musculature work in 

combination with another skeletal system element, cartilage, which is an avascular 

connective fibrous tissue formed by collagen and elastic fibers located in different 

areas of the human body (Thibodeau and Patton, 2007).  Bones and cartilage are 

organised and grouped to fulfil different functional requirements. Cartilage – like 

bone – has more extracellular matrix than cells. Other tissues associated with the 

skeletal system include fibrous and loose connective tissue, nervous tissue, 

epithelium, blood, lymphatic tissue, myeloid tissue and adipose tissue (Thibodeau 

and Patton, 2007). As seen later in this chapter, muscles will play an important role 
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in bone architecture and microstructure being responsible for the highest dynamic 

strains placed on bone (Frost, 2000).  

The skeletal system function is not only limited to the obvious structural 

support or movement. Bones are indeed multifunctional.  Internal organs are 

protected by the osseous structures and bones also provide storage of needed 

mineral like calcium, phosphate and others, allowing control of body homeostasis. 

Bones are a reserve of cytokine and growth factor allowing the balance of body 

fluids (e.g. fat). Moreover, hematopoietic activity and hormone regulation and 

production are also performed within the skeletal elements (Francillon-Vieillot et al., 

1990; Clarke, 2008). 

The majority of bones consist of a porous tissue enclosed in an outer and an 

inner compact layer. The outer superficial area is surrounded by a dense connective 

tissue membrane called periosteum. The periosteum varies in thickness depending 

on the location and it is not found at articular surfaces which are covered by 

cartilage surrounding the subchondral bone. Sharpey´s fibers (bundles of collagen 

fibers) fix the periosteum to the bone penetrating at right angles into the outer layer 

of the membrane. Bone internal superficial area – the endosteum – is lined by a 

connective tissue with a layer of flattened cells. In gross-morphology, the outer 

surface is called periosteal surface and the inner surface is known as the endosteal 

surface (or endocortical). Long bone internal hollow (medullary cavity) houses the 

bone marrow performing hematopoietic and osteogenic activities. Nutrients are 

transported via arteries that penetrate the periosteum through the nutrient foramina 

piercing into the marrow cavity and spreading internally. Marrow cavity sinuses allow 

the collection and distribution of blood through venous branches in the medullary 

cavity and the spongy bone, and out again from the marrow cavity via nutrients and 

metaphyseal veins. Blood supply to the cortical and trabecular bone  differs (see 

below): trabecular blood vessels running within the trabecular space while in the 

compact bone longitudinal canals are the main means for blood transportation (Burr 

and Akkus, 2013).  

2.3. Bone composition, structure and function 

2.3.1. Bone composition 

Bone composition consists of around 25% organic material, 65% mineral, and 

10% water fractions (Burr and Akkus, 2013). It is a hierarchical material and 
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composite substance in which all the properties of each fraction interact. Due to its 

microstructure, material quantity and arrangements change constantly through time 

and this plays an important role in bone mechanical properties and composition 

(Currey, 2002; Olszta et al., 2007). 

The organic material is secreted in the extracellular matrix and mostly 

composed of type I collagen (90%) with 10% of non-collagenous proteins (NCPs) 

which accounts for mineralization, regulation of collagen formation and fibril size, 

and mechanical functions (Burr and Akkus, 2013). Type II and type V collagen are 

found in small quantities around the bone cells. The collagen matrix organization 

consists of amino acid sequences (Gly-X-Y)n [Y usually represent respectively 

proline and hydroxyproline] (Olszta et al., 2007). Individual collagen molecules 

(tropocollagen) consist of two α1 chains and one α2 chain arranged in a triple helical 

structure. Each collagen molecule has a length of 300 nm and a thickness of 1.5 

nm; the tropocollagen molecules bond together through covalent interaction 

between hydroxyl groups of hydroxyproline and water in order to stabilize the 

structure (Burr and Akkus, 2013). Tropocollagen molecules assemble in quarter-

staggered arrays to produce the fibrillary structure organization with spaces between 

the fibrils that play an important role in the mineralisation phase. The fibrils are 

around 150 nm in diameter and 10 nm in length; the tropocollagen molecules bond 

and stack together creating micro fibrils that aggregate in order to form fibrils (Olszta 

et al., 2007).  

Bone mineral crystals are found within the collagen – both surrounding in and 

embedded within. Bone inorganic constituent is mostly hydroxyapatite, 

Ca10(P04)6(OH)2, a calcium-deficient apatite constituted by carbonated apatite 

mineral (Boskey, 2001). The average size and shape of a bone crystal under normal 

conditions ranges from 30 to 200 nm for width and length although varying 

noticeably with age (Olszta et al., 2007). Bone apatite crystals are very thin 

elongated platelets (nanocrystals). Initially, the calcium phosphate is deposited 

randomly in combination with calcium carbonate. The carbonates are reduced with 

tissue maturation and small crystals start to be deposited in parallel to each other 

and longitudinally to individual collagen fibrils. During the mineralisation processes 

all the spaces are filled with new crystals within the collagen fibrils (via 

heterogeneous nucleation) increasing the size of the existing crystals (Rey et al., 

2009). Due to crystal deposition, bone substance changes its physiological and 



www.manaraa.com

 

14 
 

mechanical properties. As bone ages, mineral crystals tend to grow and become 

larger through ion substitution and mineral stoichiometry changing the mechanical 

behaviour of the material (Burr and Akkus, 2013). Mineralization in secondary bone 

seems to occur in two phases. Primary mineralization consists of a fast increment in 

the number of minerals crystals produced by heterogeneous nucleation and the 

mineral is deposited within the collagen matrix reaching the highest levels of 

mineralization in 3 weeks from the first deposition; these primary HAp minerals are 

more soluble and disorganized. This first phase is followed by a secondary phase of 

reorganization of the structure based on a slow process of crystal accumulation, 

growing and maturation until the physiological mineralization level is reached (Burr 

and Akkus, 2013).  

Water can be found within the collagen fibrils and also running along the 

vascular canals when needed. The water-mineral proportion is 1:1 which influences 

directly bone tissue mechanical properties as seen in highly mineralised bone with 

the reduction of water reducing elasticity properties (Burr and Akkus, 2013).  

2.3.2. Structure and function of cortical and cancellous bone 

There are two types of bone that can be differentiated by gross observation: 

cortical bone (compact bone) and cancellous bone (more porous bone) (Figure 2.1). 

An alternative terminology for cancellous bone, trabecular bone, is used mostly for 

the microscopic approach due to its relations to the trabecular spurs but not as a 

structural element (Burr and Akkus, 2013). Compact and cancellous bone differ in 

the degree of porosity, function and mechanical properties. The chemical 

composition of both types of bone is the same but the ratio of the constituents 

differs. The calcium content, tissue density and ash fraction (both volume fraction 

and mineral content) is lower in trabecular than in cortical bone tissue (Gong et al., 

1964). 
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Figure 2.1 Cortical and cancellous bone from the organ and tissue level to the 

molecular structure (Burr and Akkus, 2013: 4 fig. 1.1). 

 

The solid outer layer of skeletal elements is composed of a dense shell (Guo, 

2001). Cortical bone composition compromises mineral (70% mostly 

hydroxyapatite), type I collagen (22%) and water (8%) (Augat and Schorlemmer, 

2006). In the cortical lamellar bone, collagen fibres and ductility through the mineral 

crystals determine stiffness. The collagen fibrils are arranged cylindrically around an 

axial canal (see below for a detailed description for osteonal bone tissue). 

Intracortical porosity (size and distribution of the pores) is strongly related to the 

material properties of bone. The degree of porosity (intracortical porosity) is around 

5% in young individuals and it increases with age with a direct effect on cortical 

architecture and bone mass (Augat and Schorlemmer, 2006). In such a low porosity 

(1-5%), size and distribution of the material is also related to the functional and 

mechanical bone properties. Therefore, the thickness of cortical bone varies 

depending on the area of the element (i.e. greater bone thickness of the diaphysis 

compared to the metaphysis).  Hence, the balance between resistance to loading 

and movement is kept through the balance of the structure (Wallace, 2013). When 

bone turnover is low, bone has a high Young´s modulus (elasticity modulus) with 

resistance in torsion and bending. Due to its solidity, this type of bone serves 

functionally as a protective shell for the inner structurally weaker bone (cancellous 
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bone) (Guo, 2001). Cortical bone receives around 60 % of the blood supply through 

the endocortical surface and 30% from the intracortical blood flow and periosteal 

surface (Burr and Akkus, 2013).  

Cancellous bone is a porous material composed by both hard and soft tissue 

found inside flat and irregular bones (i.e. vertebral bodies or pelvis) and in the 

epiphyses of long bones. Cancellous bone has a honeycomb like network based on 

an arrangement of plates and thin rods (0.1 mm) that have single or multiple 

connections between them and are arranged in a directional orientation (Guo, 

2001). Each trabecula is oriented accounting parameters such as thickness, 

spacing, number and connectivity (Wallace, 2013). There are different types of 

trabecular bone depending on the rod/plates arrangements, size and orientation 

(Singh, 1978): 

 A non-oriented fine rods structure, with either straight or curved rods found 

inside the long bone marrow cavities.  

 A structure built up both by rods and plates (either fine plates found in the 

pubis body or near the glenoid cavity). 

 Bigger irregular plates connected by small ones and rods found in the 

calcaneus, or a structure with plates parallel to each other connected to adjacent 

ones via rods found on articulation areas. 

 Only trabeculae made of different sizes plates with a great variety in their 

orientation and density as the one located in the vertebral bodies and most parts of 

the skeleton.  

Depending on the types of trabecular arrangements described, the degree of 

porosity varies around 75-95%. The architectural structure of the trabecular plates 

and rods (100-150 um of thickness) accounts for about 30% of the tissue space with 

the remaining area being filled by bone marrow. This spatial organization provides 

mechanical support optimising the weight of the bone itself (Martin et al., 2015).  

At the tissue level, material properties differ between the cortical and 

cancellous bone implying differences in their mechanical properties. Both cortical 

and cancellous bone are not only competent in strength and stiffness but they are 

also resistant to loading stress and they prevent fatigue (Martin and Burr, 1989). 

Cancellous bone mechanical properties need to be regarded according to its density 

and trabecula arrangement. The grains in the lamellar bone are organised fairly 
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along the length of the sheets with the loading forces being applied at the end of 

these structures. Thus, the loading forces come in the same direction as the grain 

providing stiffness and strength to the whole structure; it is dependent of volume 

fraction and architecture and other factors as age and pathologies (Guo, 2001). The 

organization of the single trabecula itself gives to cancellous bone its anisotropic 

property (Currey, 2002). Cortical bone minerals allow the structure to bear 

compression forces while the competence in tensile forces is provided by the quality 

of the collagen fibrils and their orientation. Changes in material properties alter the 

mechanical properties of cortical bone; e.g. from small crystals to large crystal due 

to the aging processes producing a reduction in elasticity properties of bone tissue 

(Augat and Schorlemmer, 2006). 

The degree of porosity may play an important role in this functional-structural 

differentiation. Due to its porosity, trabecular bone is weaker than cortical bone 

(under the same volume of tissue) and in general terms, cortical bone is more 

resistant in tension and bending while cancellous is stronger in compression 

(Wallace, 2013). Both cortical and cancellous bone are arranged to build the bone in 

a way that the whole structure of the skeletal element complies with its specific 

mechanical and functional requirements. Also, cancellous bone is mechanically 

more heterogeneous than cortical bone with variation in the degrees of stiffness and 

strength depending on the area under examination (Rho et al., 1998). Ultimately, 

material and structural properties of both types of bone are founded as a composite 

material at the nanostructure level with cortical and trabecular bone differentiation 

being not so defined. Thus, they account for a similar composition but in different 

degrees of expression in view of responding to different metabolic demands (e.g. 

higher remodelling and lower mineralization in trabecular than in cortical bone) 

(Oftadeh et al., 2015). 

2.4. Microstructural level: organization of bone tissue 

2.4.1. Histological tissues: woven bone, parallel fibered bone and lamellar 

bone 

Woven, plexiform and lamellar bone are material tissues that differ in material 

patterns, structural properties and  in collagen fibre orientation (Currey, 2002). 

Woven bone is primarily laid down, and as maturation goes on, it is replaced by 

lamellar bone (known as Harversian bone) which is the most commonly material 
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found in bone tissue (Currey, 2003). The distinction between primary and secondary 

bone – which will be explained in depth in the next section – is fundamentally based 

on bone deposited de novo (primary) and bone being formed on a pre-existing bone 

surface (secondary) (Martin et al., 2015).  

Woven bone is characterised by quick bone deposition (4 μm/day circa) and it 

is a transient tissue usually found in the foetal skeletal system or in the callus 

formed during the healing process of bone fracture (Burr and Akkus, 2014; Martin 

and Burr, 1989). Collagen fibrils are organised in thick bundles (0.1-3 μm in 

diameter) and randomly oriented in a 3D plane. Consequently, direction of 

mineralization is hardly predictable and crystals deposition does not follow a regular 

pattern. This non-homogeneous distribution is related to the formation of numerous 

centres of mineralisation with some areas not presenting any degree of mineral 

(Currey, 2002). It contains a large number of isodiametric osteocytes and it is highly 

vascularised (Currey, 2003). Overall, woven bone shows the same material 

(chemical) properties of all the other types of bone while structural properties vary 

considerably in relation with the mentioned collagen fibrils orientation (Currey, 

2002). Woven bone is also formed as a repair tissue during fracture healing and in 

other pathological disorders but also as a response to high excessive mechanical 

stress (Burr and Akkus, 2013). 

Plexiform bone (also known as parallel fibered bone) is mostly formed of 

primary fibrolamellar bone organised in bundles of mineralised collagen fibrils that 

have been deposited quickly – as woven bone – but presents an unidirectional 

organization and an improvement in mechanical properties (Burr and Akkus, 2013; 

Reznikov et al., 2014a). It combines both nonlamellar bone (formed de novo) that 

serves as the core substrate, and primary lamellar bone that lays superficially on the 

substrate. The result is a structure of buds that start from being deposited 

perpendicularly on a small space of bone from the envelopes (subperiosteal or 

subendosteal), to form on most of the surface with the buds being adjacent to each 

other in a parallel fashion. Theses buds are separated through spaces filled by 

vascular elements producing a brick wall pattern (Figure 2.2B). Normally, it is found 

in rapidly growing animals but it might be also found in children in relation to 

maximum growth rate periods (Burr and Akkus, 2014; Martin and Burr, 1989).  

Lamellar bone is deposited at a slower rate (less 1 μm per day) on an existing 

bone surface with collagen fibrils organised in layers (lamellae) and arranged in 
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bundles of 2-3 μm separated by disorganised material. Specific bone cells 

(osteocytes) sit in elongated spherical lacunae oriented parallel to the lamella plate. 

Usually, lamellae organise in arrays of 3-7 μm thickness alternating with thinner 

lamellae of approximately 1 μm thickness. In these two types of arrays, the crystals 

assume different structures and orientations (Reznikov et al., 2014b). This 

configuration influences structural properties resulting in a stronger material tissue. 

Furthermore, its composition is highly variable according to the area of examination. 

For example, cancellous lamellar bone presents a particular composition to satisfy 

mineral homeostatic and haemopoietic functions, while in areas subjected to high 

mechanical stress the composition is such that it can prevent fracture risks (Weiner 

et al., 1999; Currey, 2002; Martin and Burr, 1989). Lamellae present different 

patterns: lamellar bone bordering the endosteal or periosteal surface organised as 

layers of bone, primary interstitial lamellae (primary lamellar bone deposited de 

novo), or osteonal lamellae (osteonal interstitial lamellae and osteonal concentric 

lamellae) (Figure 2.2A and 2.2B). There is a highly mineralised lamellar bone type 

tissue known as interstitial lamellar bone that appear filling the spaces between 

secondary osteons and represents the traces of primary or secondary lamellae that 

have been resorbed by latter secondary bone deposition. This layered bone that 

appears not structurally organised has an older age tissue than the nearby osteonal 

bone. In adult healthy individuals, approximately half of the bone area is built by 

osteonal lamellar bone. The remaining area is formed by interstitial bone (Burr and 

Akkus, 2013). Two morphological types of lamellar bone can be differentiated 

microscopically: the circumferential lamellar bone at the endosteal and periosteal 

surfaces, and the osteonal lamellar bone within the intracortical surface (Currey, 

2003; Burr and Akkus, 2014; Reznikov et al., 2014a). 

2.4.2. Microscopic bone at the tissue level: cortical and trabecular bone 

As seen in the previous section, cortical and cancellous bone are different in 

morphology and functional properties at the tissue level, but at the microscopic 

tissue level they are both composed of lamellar bone (Table 2.2). In this section, a 

microscopic detailed description of cortical and trabecular bone will be presented. 
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Table 2.2 Summary of microstructural and histological characteristics of cortical and 

trabecular bone (Adapted from Jee, 2001). 

Features Cortical Bone Tissue Trabecular Bone Tissue 

Microstructural 100-300 μm (osteon diameter) 
100-640 μm (trabeculae mostly 
hemiosteons; osteons appear in 

transitional areas) 

Cement line 
Surrounding osteonal 

structures 

Cement line surrounding 
hemiosteons 

(more numerous) 

Lamellar thickness 30-40 μm, 460/mm2 38-55 μm, 156-577 /mm2 

Bone turnover 3% 26% 

Porosity and circulation 5-10% (slow circulation) 
50-90% (high diffusion of nutrients 

and waste) 

2.4.2.1 Cortical bone 

Cortical bone is organised in the circumferential bands of lamellar bone (3-7 

um thickness) separated by approximately 1 um thickness of interlamellar layers; 

these bands can be found running along the periosteal or endosteal walls, around 

the vascular channels (primary or secondary osteons) and within the trabeculae 

(Burr and Akkus, 2013). Their structural and mechanical properties are both 

determined by the material itself and by its organization accounting for 70-80% of 

the bone strength as measured by geometrical measurements (Augat and 

Schorlemmer, 2006). The microscopic structures of not tubular bones are the same 

(i.e. cranial bone), although histologically a more irregular organization is seen as a 

result of the different biomechanical forces applied on them (Hillier and Bell, 2007).  

Cortical lamellar bone can be further differentiated in circumferential lamellar 

bone (endosteal and periosteal surfaces) and osteonal lamellar bone (intracortical). 

In addition, lamellar bone differentiates in two types of bone tissue. They both share 

the same circumferential lamellae organization and similar osteonal structures but 

differ in the formation of the tissue: primary lamellar bone and primary osteons, and 

secondary lamellar bone resulting on secondary osteons (Weiner et al., 1999) . Low 

mineralization makes primary lamellar bone weaker than secondary bone; however, 

secondary lamellar is a more brittle material than primary bone due to higher 

porosity and higher mineralization. As age advances, previous secondary osteons 

will be overlapped by new depositing bone (newly formed osteonal structures) which 

will be a phenomenon used for age estimation methods. Hence, different types of 



www.manaraa.com

 

21 
 

osteonal bone based on unremodelled or remodelled surfaces need to be identified 

for aging techniques (Kerley, 1965). 

Three types of primary bone are found (primary lamellar bone, plexiform –

already described – and primary osteons) (Figure 2.2A). Although different in 

structural and mechanical properties, primary bone is always deposited de novo 

onto a surface that has not been previously remodelled.  

 

 

Figure 2.2 Types of primary and secondary bone (A, C and D: human rib cross-

section, sample study photomicrographs).  A: primary lamellar bone formed by a 

series of parallel laminar sheet (circle), arrow indicating a primary osteon; trabecular 

bone (arrowhead) (40x). B: plexiform bone: brick-like structure (from Burr and Akkus, 

2013: 14 fig. 1.9). C: dense secondary cortical bone formed by interstitial bone and 

different types of secondary osteons (100x semi-polarised, study sample). D: single 

osteon; Haversian canal (arrowhead) (note concentric lamellae surrounding the 

canal), cement line separating the osteonal structure from the interstitial bone (arrow 

and black outline), osteocytes (white arrows) (100x, study sample).  

Primary lamellar bone is composed of laminal sheets running in a parallel 

fashion to each other. It is mostly found close to the periosteal surface although it 
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occurs also on the endosteum and on the trabeculae. Depending on the 

topographical location, the tissue may change in order to fulfil metabolic demands 

from dense stable material found on the periosteum to more prone to replacement 

and turn over as found on the endosteal envelop (Burr and Akkus, 2013).  

Primary osteons or primary vascular canals consist of concentric lamellae 

surrounding a vascular canal with a non-clear delimitation between the osteonal 

structure and the surrounding bone matrix. It has been suggested that primary 

osteons have smaller vascular canals and less surrounding lamellae than secondary 

ones with around 10 lamellae or less and a diameter of approximately 50-100 μm 

(Martin and Burr, 1989). The concentric layers of bone are added on specific bone 

areas changing through the length of the vascular canal to accomplish mechanical 

and physiological requirements. Primary osteons are the result of primary bone laid 

down from the vascular canal to the outer lamella, as a process of transformation 

from woven to lamellar bone (Currey, 2002). They are normally found in areas of 

primary lamellar bone closely located to blood vessels in order to assist in calcium 

homeostasis, serving as storage of calcium ions (Martin and Burr, 1989). They may 

appear close to the endosteal surface during endosteal drift or trabecular 

compaction where the voids will be filled by new bone (Stout and Crowder, 2012).  

Secondary lamellar bone implies the apposition of bone tissue by resorption of 

pre-existing bone and its replacement by newly bone formation (see bone 

remodelling later in this chapter). This mechanism is known as intra-cortical 

remodelling activity resulting in the formation of secondary lamellar bone that 

consists of tubular structures (Figure 2.2C). It consists of the coordination of 

resorption and formation of bone created by cylindrical arrays of lamellae (Burr and 

Akkus, 2013). These structures are called Harversian systems or secondary osteons 

(Currey, 2002). Harversian systems are formed by longitudinal arranged fibres with 

an average length of 1-10 mm embedded within the interstitial lamellae and 

delimited from the matrix by a boundary called the cement line (Figure 2.2D). These 

microstructures are fairly cylindrical in length and they have a diameter of 200-300 

μm varying considerably with age and pathological conditions (Currey, 1964; 

Jowsey, 1966). The concentric lamellae surround a circular canal that varies in 

shape. The Haversian canal typically has a diameter of around 50-90 μm with the 

tubular systems running slightly parallel to the axis of the bone (11-17 degrees) 

(Cohen and Harris, 1958).  Haversian canals can branch out and they can vary in 
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size, shape and orientation along their length (Cohen and Harris, 1958; Stout et al., 

1999). Recent research has shown that the branching pattern seems to be either 

transverse (coming off from the Haversian system) or dichotomous branching 

(bifurcation of a Harversian system) (Maggiano, Maggiano, Clement et al., 2016). 

The orientation of the adjacent osteonal lamella varies in a fashion that the layers of 

lamellae are not either completely parallel or perpendicular to the cylinder axis 

(Reznikov et al., 2014b). As a general organization, each layer of lamellae has fibrils 

that are arranged longitudinally in one lamella and circularly in the next, with the 

bundles of fibrils cutting each other in less than 90 degrees (Weinmann and Sicher, 

1955). The orientation of the collagen fibers are organised from helicoidal to 

orthogonal bundles with an intermediate phase, although it has been also suggested 

that dense or loose bundled fibers are arranged in pairs of layers  (Giraud-Guille, 

1988; Marotti, 1993). The different arrangements of the adjacent lamellae in 

osteonal bone respond to mechanical and physiological demands resulting in a wide 

variety of types of secondary osteons morphology (Reznikov et al., 2014a). 

The Haversian canal contains vessels which diameter is about 15 μm being 

wider in the endosteal area than in the periosteum. The vessels are surrounded by a 

basement membrane that regulates the ionic transport though the capillary wall. The 

vessels communicate to each other transversally perforating the circumferential 

lamellae to link (branching or merging) adjacent Haversian systems by the so called 

Volkmann’s canals (Reznikov et al., 2014a). They can be seen in a cross-section as 

a tunnel crossing two Haversian canals. Different types of cells like osteoblasts in 

different stages (activated or resting), pluripotential mesenchymal cells and lining 

cells are found between the vessels and the canals´ wall (Martin and Burr, 1989).  

Following the orientation of the lamellae, osteocytes are trapped in lacunae 

(small cavities) (Figure 2.2D). Osteocytes are arranged parallel to the orientation of 

the collagen fibers (16-20 cylindrical lamellae). The osteocytes are as close as 100-

150 μm to the canal from where they receive the necessary blood supply and 

nutrients. They are connected by canalicular processes (canaliculi). The canaliculi 

are evenly distributed along the different concentric lamellae levels allowing 

communication with the surrounded lacunae area and with the extracellular space of 

the canal wall. The metabolic exchange and regulation of ion passage between 

bone cells and blood is carried out through the canaliculi network (lacunar-

canalicular system) (Martin and Burr, 1989). The canaliculi, which density reduces 
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with age, may cross the cement line creating an metabolic connection between the 

blood vessels inside the Haversian systems and the surrounding external bone 

matrix (Milovanovic et al., 2013).  

The Haversian system is delimited by a cement sheath (also known as 

reversal line). This cement line has a thickness from 1-5 μm that separates the 

secondary osteon from the rest of the bone matrix (Figure 2.2D). The cement line 

appears as a local interface when no more bone reabsorption occurs in the tubular 

structure (cutting cone) and the new bone deposition process is about to start; the 

line represents the traces of reabsorbed surfaces by osteoclast activity (Burr and 

Akkus, 2013). It is mainly composed of glycosaminoglycans and a low quantity of 

collagen, although the degree of mineralization in the cement line in comparison to 

the surrounding bone can vary and different studies have shown controversial 

findings (Schaffler et al., 1987; Burr et al., 1988; Skedros et al., 2005). Whether high 

or low mineralization, the mechanical properties still will remain either stopping or 

preventing crack growth providing resistance to fatigue failure (Burr et al., 1988; Burr 

and Akkus, 2014). There are other types of histological features known as arrest 

lines that, although similar to the cement line, they are not indicative of resorption 

but instead an indication of a temporary interruption of the filling process within the 

Haversian system which could be diagnostic for specific physiological conditions 

(Ortner and Turner-Walker, 2003). 

The process of formation of the Haversian systems is related to modelling and 

remodelling mechanisms. Osteoclasts are activated and remove existing bone 

forming a cutting-cone (about 200um diameter/ 300um thick) (Martin and Burr, 

1989). The cylindrical cavity will be filled by deposition of cylindrical layers of bone 

resulting in the concentric lamellae we observe microscopically (lasting from 2 to 4 

months) (Figures 2.2C and 2.2D) (Currey, 2002). Depending on the dispersion of 

the Haversian system, secondary bone can be divided into irregular (few osteons 

irregularly placed on the bone matrix), endosteal (located at the endosteal margin 

and being incomplete and irregular in shape), and dense (bone matrix crowded with 

numerous Haversian systems) (Enlow and Brown, 1957; Hillier and Bell, 2007). 

Cortical bone circumferential lamellae present variations depending on the 

given bone area and the individual´s age. Periosteal lamellae are more numerous 

than lamellae found on the endosteal area in young individuals. While with 

advanced age, the endosteal area experiences reabsorption and the periosteum is 
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remodelled by secondary osteons. As mentioned earlier, interstitial bone is found 

within the osteonal structures as part of the entire cortical lamellar picture. Young 

individuals account for less interstitial bone and more organize osteonal bone than 

old individuals for which an increase in resorption and deposition processes results 

in cortical bone to be filled with higher densities of interstitial bone and osteonal 

structures (Currey, 1964). 

2.4.2.2 Trabecular bone 

Haversian systems are not formed in trabecular bone. In the trabecular 

envelope, an equivalent structure known as hemi-osteons is represented by the 

morphology of half an osteon with an approximate thickness of 35 μm, surrounded 

by concentric lamellae and missing a central canal (Clarke, 2008). The sheets of 

lamellae are organised in a mosaic-like microstructure with angular segments in a 

parallel fashion (called trabecular or lamellar packets) arranged in alignment to the 

trabeculae. The lamellar packets are organised in arrays in such a fashion that the 

last deposited lamellar packet is aligned with the most superficial trabecular surface 

(Guo, 2001). A single trabecula within the lamellar packet is also surrounded –as the 

secondary osteons- by a boundary (cement line) (Reznikov et al., 2014a; Oftadeh et 

al., 2015). 

2.5. Bone cells 

There are three main types of bone cells that are involved in the formation and 

resorption of bone. Osteoclasts are mainly involved in bone resorption, osteoblasts 

are responsible for bone deposition, and osteocytes for maintenance and repair of 

bone. The basic multicellular unit (BMU) responsible for the remodelling process 

consists of osteoclasts degrading bone and osteoblasts forming bone (Parfitt, 1979).  

2.5.1 Osteoclasts 

Osteoclasts are multinucleated cells derived from the hematopoietic monocyte 

– macrophage linage (Jähn and Bonewald, 2012). Osteoclast precursors proliferate 

in the bone marrow microenvironment in response to growth factors and cytokines. 

The fusion of mononuclear precursors into multinuclear mature osteoclast takes 

place at the bone surface level under the influence on RANKL (tumour necrosis 

factor –TNF- family of ligands) and transmembrane proteins. How osteoclasts move 

from the bone marrow to the bone surface in order to reabsorb specific bone areas 
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is still unknown, although it has been suggested that they may receive signals from 

osteocytes and bone lining cells (Gu et al., 2005; Väänänen and Zhao, 2008). 

Osteoclast survival, activity and formation are also regulated by steroids hormones 

(Bellido et al., 2014). The resorption cycle consists of a multistep process in which 

osteoclasts go cell activation, creation of the sealing zone, polarization, bone 

removal and cell apoptosis (Väänänen et al., 2000). A single osteoclast can go 

several resorption cycles before cell apoptosis. Osteoclasts’ activation is based on 

membrane reorganization and formation (Figure 2.3A). In resorption, osteoclast 

polarization in the different membranes is very high and mostly driven by the activity 

of integrin receptors (transmembrane proteins) in the sealing zone (Bellido et al., 

2014).  To prepare for bone removal (cell activation), an apical membrane domain 

close to the bone surface and a basolateral membrane domain away from the bone 

surface are created. During osteoclast activation, the sealing zone (acting ring 

formed as a structure of microfilaments) is created for the adhesion of bone cells to 

the bone surface. In vitro, the sealing zone appears as a ring of adhered dense 

structures called podosomes that are essential for bone remodelling activity due to 

their role in adhesion and degradation of the extracellular matrix (Clarke, 2008). The 

ruffled zone and the transition zone (separated by the sealing zone) are used for 

secretion of hydrolytic enzymes and degradation of bone matrix. During osteoclast 

resorbing cycle, the functional secretory domain (FSD- which is located in the basal 

membrane) plays an important role for carrying bone degradation products (Nesbitt 

and Horton, 1997; Salo et al., 1997). After completing the reabsorption, osteoclasts 

undergo apoptosis (Clarke, 2008). 

An active osteoclast is found in specific cavities within the bone surface 

(resorption lacuna) (Väänänen and Zhao, 2008) . The process of bone mineral 

dissolution is based on the solubilisation of crystals by lowering the pH in the 

resorption lacunae by the action of a proton pump (Salo et al., 1997). This allows the 

cell to survive in a highly mineralised environment. After mineral is removed, the 

organic matrix is degraded through the activity of two types of proteolytic enzymes 

both intra and extra-cellular matrices. The degradation products are finally released 

either by transcytosis from the ruffled border to the basal membrane (FSD) or by 

continuous removal from the resorption lacunae to the sealing zone (Väänänen and 

Zhao, 2008). 
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2.5.2 Osteoblasts 

Osteoblasts originate from mesenchymal cell progenitors (Aubin and Triffitt, 

2008). Osteoblasts´ function consists of secretion of bone matrix protein and bone 

mineralization. Their morphology is typical of high protein secretion cells with a 

polygonal shape, with a large nucleus away from the bone surface and a Golgi 

apparatus facing the bone surface. The process of bone formation comprises of 

several phases (Figure 2.3B): proliferation, extracellular development and 

maturation, mineral deposition and apoptosis. The phenotypic expression of an 

osteoblast changes depending on the phase (with different cell phenotype in the 

different stages) (Aubin and Triffitt, 2008). The maturation process of osteoblast 

concerns the following main stages: preosteoblasts, mature osteoblasts, osteoid 

osteocytes, early osteocyte and mature osteocyte (trapped in the bone matrix) (Jähn 

and Bonewald, 2012). Osteoblasts differentiation is controlled by the transcription 

factor Runx2 which will determine the expression of osteoblast phenotype-specific 

genes essential for regulation of bone formation and remodelling (Schinke and 

Karsenty, 2008). There are two signalling path (family of secreted proteins) that 

activates osteoblasts, contributing to skeletogenesis and homeostasis: BMPs for 

differentiation of osteoblasts precursors proliferation; and Wnts involved in 

differentiation, proliferation and cell apoptosis. Osteoblasts secrete large amounts 

on type I collagen and other matrix proteins, and produce also high levels of alkaline 

phosphatase (ALP) and osteocalcin (Bellido et al., 2014). 

The organic component of bone matrix or osteoid deposited by mature 

osteoblast is mostly type I collagen which provides tensile strength to bone. Other 

types of non-collagenous proteins (like osteocalcin) are also secreted in order to 

form this matrix in the osteoid stem. Subsequently, osteoblasts carry out the 

mineralisation of osteoid by depositing calcium and phosphate and liberating matrix 

vesicles (Safadi et al., 2009). 

Upon bone deposition, osteoblasts can die by apoptosis or become lining 

cells. Osteoblasts apoptosis will be the fate of 60-80% of the osteoblasts with cell 

detachment, composition changes and shrinkage as main characteristics (Jilka et 

al., 2007). Some of the remaining osteoblast will flatten on the inactive surface of 

bone (no formation or resorption area) as lining cells. These cells show a flat nuclear 

profile and they create a connective tissue barrier. Under the right stimulus, lining 

cells have the ability to become active osteoblasts and produce bone matrix. Lining 
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cells participate with osteocytes in the exchange of minerals from bone to cells, 

restrict resorption activity of osteoclast when it is not needed and participate in these 

cells´ differentiation; they are also part of the remodelling process being a 

component of the bone multicellular unit (BMU) (Florencio-Silva et al., 2015) 

2.5.3 Osteocytes 

The other option for the osteoblastic cell is to be entrapped in the bone matrix 

and remain there for bone maintenance (Figure 2.3C). These types of cells are 

known as osteocytes. Osteocytes are mesenchymal stem cells that descend from 

osteoblast differentiation and are responsible of mineral regulation and bone 

maintenance detecting mechanical stress (see below). Osteocytes transform from 

the polygonal cell to a star-shaped cell going through changes in gene expression. It 

seems that specific osteoblast develops cytoplasmic processed resulting in 

osteocyte differentiation. 5% to 20% of the mature osteoblasts will turn into 

osteocytes and they are the more numerous bone cells found within the matrix or on 

the bone surface (90% of the total) (Klein-Nulend and Bonewald, 2008; Bellido et al., 

2014).  

Osteocyte body is trapped within the matrix (in spaces called lacunae); it has 

cytoplasmic dendritic projections. For each osteocyte, there are around 50 

processes joined via gap junctions which establish intercellular connection in the 

canaliculi network. These canaliculi allow the transportation of proteins produced 

and secreted by osteocytes and expands osteocyte activity through the periosteal 

and endosteal surfaces and on the vicinity of the bone marrow in the trabecular 

bone (Bellido et al., 2014). Because osteocytes derive from mature osteoblast, they 

share most of the genes and proteins with those bone cells but in different levels of 

expression (e.g. osteocytes have higher levels of proteins required for 

mineralization). Osteocytes are the only bone cells that produce sclerostin which 

has an effect on osteoblast polarization and activity though controlling BMP and Wnt 

signalling (Poole et al., 2005). Osteocytes death may be a regulator of osteoclast 

activity by producing local damage or micro damage of bone and recruiting and 

activating lining cells and therefore, initiating remodelling activity (Bonewald, 2011). 

Osteocytes play an essential role in the detection of mechanical stress, and 

consequently coordinate the action of osteoblasts and osteoclasts in order to 

maintain bone integrity trough modelling and remodelling (Lanyon, 1993). 
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Furthermore, they react to environmental changes and hormonal stimuli balancing 

bone turnover. Due to their location in the Haversian canal system (Figure 2.2D), 

osteocyte networks allow the regulation of blood calcium and blood phosphate 

homeostasis and other protein regulators of mineralization as the aforementioned 

sclerostin (among others) (Jähn and Bonewald, 2012). Osteocyte life span may be 

determined by the rate of bone matrix turnover indicating that they may be 

reabsorbed or “liberated” by active osteoclasts (Klein-Nulend and Bonewald, 2008). 

These released osteocytes may get trapped again within the matrix during bone 

formation or undergo definite apoptosis and become phagocytosed (Suzuki et al., 

2000). Osteocyte cell death can lead to deficiencies in bone quality and bone mass 

with the surrounding bone matrix area becoming in fact more brittle and fragile due 

to the focal hypermineralization of the tissue (Atkins and Findlay, 2012). 

 

Figure 2.3 Bone cells. A: osteoclast formation and resorption activity on the different 

membranes (F.S.D = functional secretory domain). B: osteoblast differentiation, 

formation and activation. C: osteocytes lying within the lacunae spaces and connected 

by canaliculi network (Images adapted from Adamopoulos and Mellins (2014: 190 

fig.1) and Kumar et al. (2015: 63 fig 2.16). 
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2.6. Bone development and growth 

Bone growth is considered a higher level of bone formation that accounts for 

changes in mass and size. Osteogenesis (bone formation) has two processes: 

Intramembranous and endochondral ossification. Unless noted, the following 

discussion is based on the work of Jee (2001), Scheuer and Black (2004) (2004), 

Maes and Kronenberg (2012) and Weaver and Fuchs (2013).  

At the early foetal stages, skeletal development begins with the condensation 

of mesenchymal cells. The ossification of these structures results in bone 

membrane and bone cartilage, the first group developing through mesenchymal 

ossification and the second group through endochondral ossification. Both bone 

development types follow similar cellular paths. First, there is an increase on the 

number of cells and fibres followed by cell differentiation. The process finalises with 

osteoblasts activity laying down the organic matrix and ostecytes proceeding with 

the mineralisation process. In embryonic bone formation, woven bone is firstly 

formed and it will be replaced after birth by the bundled lamellar bone. 

Skeletogenesis is strongly genetically determined with a programmed spatial and 

temporal patterning of the skeletal element to be formed; however, other factors 

such as diet, physical activity and vitamin intake – among others – have also an 

effect on prenatal skeletal development. 

Intramembranous ossification is the direct mineralization of a tissue membrane 

and it forms the bulk that is the precedent of the cortical shell. The process starts 

with fibrocellular condensation in the embryo, followed by an increase in cells and 

fibres that produce the formation of the primary centre of ossification. The process 

continues with apposition of bone. Osteoblasts start forming a diffuse network of 

bone spicules that will result in the primary spongiosa. The thickness of the 

spongiosa increases as more osteoids are laid down; compact bone appears when 

the spaces between the primary trabeculae are occupied by the formation of primary 

osteonal systems that will be replaced by Haversian systems. Many plate-like bones 

of the skull, facial bones, parts of the mandible and clavicle, and the sense bones 

are formed by intramembranous ossification.  

Endochondral ossification forms the bulk that will become cancellous bone 

and it mostly associated with long bones development. The first step is 

mesenchymal in nature forming hyaline cartilage as a precursor of bone (as there is 
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no direct replacement of cartilage per se). The cartilage usually appears in the 

embryonic period with chondrocytes (cartilage cells) producing the matrix which will 

serve as a model of the future bone. The matrix mineralizes and a vascular bud 

forms an interruption canal that penetrates the periosteal collar allowing 

osteogenesis to take place. Osteoid appear on the calcified cartilage walls that 

gradually will be transformed into woven bone. The result is a transformation into 

primary spongiosa spicules in the form of calcified cores surrounded by woven 

bone. The periosteal collar is formed and the primary centre of ossification appears. 

The collar will be replaced by secondary trabecula or by bone marrow. Long bones, 

vertebrae, tarsals, carpals, sternum and ribs developed via endochondral 

ossification.  

In long bones, growth occurs longitudinally at the growth plate with the 

cartilage on the metaphyseal side being replaced by calcified tissue. This 

replacement will push the increase in length of the skeletal element occurring in four 

zones: reserve (resting), proliferative, hypertrophic and provisional mineralization. 

The diaphyseal development consists of radially appositional growth with bone 

formation at the bone surface creating ridges parallel to the blood vessel. The ridges 

will augment and fuse leaving a longitudinal space in the middle that will become the 

canal. The canal houses the blood vessel and once the process is completed a 

typical osteon structure is accomplished (refer to Scheuer and Black (2004) for more 

detail). 

 2.7. Bone modelling and remodelling 

Bone modelling consists of the coordinated activity of the resorption of bone 

by osteoclasts and the formation of bone by osteoblasts; this occurs at any bone 

surface accounting for bone changes related to shape, size and position. Bone 

remodelling consists of a coupled and coordinated activity of osteoclasts and 

osteoblasts on a specific bone surface occurring at three sequential steps –

activation, resorption and formation- accounting for bone maintenance and repair 

(Table 2.3) (Stout and Crowder, 2012).   
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Table 2.3 Summary of bone modelling and remodelling main characteristics. Adapted 

from Jee (2001) and Allen and Burr (2014). 

 
Modelling Remodelling 

Goal Shape bone, increase bone mass Renew bone 

Location Different surfaces Spatial 

Cell/Mechanism A-F; A-R A-R-F 

Bone envelopes 
Periosteal, endocortical, 

trabecular 
Periosteal, endocortical, 
trabecular, intracortical 

Timing Continuous Cyclical 

Extent Large (>90%) Small (<20%) 

Apposition rate Fast (2-10 /day) Slow (0.3-1.0 μm /day) 

Net effect on bone 
mass 

Net gain (increase) 
No change or net loss 

(maintenance or 
slight decrease) 

Occurrence 
Mostly during growth, childhood; 

special circumstances in adulthood 
Throughout life spam 

MES threshold < 200 microstrain > 1500-2000 microstrain 

A=activation, F=formation, R=resorption; MES= minimum effective strain 

Skeletal growth, development and modelling primarily account for the normal 

development of the skeleton, although modelling can be distinguished as a sub-

process of these two other phenomena. To summarise the differences between 

bone growth and modelling, bone growth (periosteal and endosteal expansion) 

accomplishes bone mass peak, whilst bone modelling accounts for diametric shape 

and curvature and general position in relation to the rest of the skeletal elements 

through different morphological changes (Frost, 2001; Maggiano, 2012). Hence, 

different hormonal inputs and biomechanical mechanisms are involved on each 

process. 

Modelling always occurs in a pre-existing bone surface at the periosteal and 

endosteal membranes (PEM) (Frost, 1973). There is also evidence of bone 

formation and resorption modelling in random cortical areas domains – termed foci 

according to Frost (1964) – that can be seen as variations in the orientation and 

depth of the lamellae under polarised light (Maggiano 2012). 

In modelling, both osteoclasts and osteoblast work independently and co-

ordinately (cell activity at a locus but not necessary at the same time). Resorption is 

not a pre-requirement for deposition (as it will be in bone remodelling) (Martin et al., 

2015). The signal received by the bone cells is based on local tissue strain, and 

bone formation or bone resorption are respectively initiated depending on the higher 
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or lower strain stimulation. During modelling, the cellular process compromises first 

cell activation, followed by either formation or resorption; lining cells are also 

involved by activation and may become active osteoblasts (Frost, 1973; Allen and 

Burr, 2013).  

The modelling process is more active during development and growth but it is 

also present during early maturity and occurring at a lower rate during late adulthood 

(Allen and Burr, 2013). Modelling takes place also in some pathological conditions 

or with radical changes in the mechanical loading (Ruff et al., 2006; Peck and Stout, 

2009). The modelling functions are related to growth, drifts, lamellar compaction 

(understood as the process of filling empty bone spaces to transform trabecular 

bone into compact bone when required) and bone adaptation. This is achieved by 

bone resorption and bone formation on a given bone surface. Modelling formation 

process consists on the deposition of primary bone that, histologically, may appear 

as a continuum between woven bone and lamellar bone deposited at a rapid rate, or 

as lamellar bone with more organised collagen fibrils deposited at a lower rate; in 

both cases, an increase of bone mass occurs (Maggiano, 2012). Bone shape, seen 

as morphological adaptation/modification through a geometric determination, is 

carried out by modelling drifts (Frost, 2001). Modelling drift is driven by bone 

modelling formation in the diaphysis at both periosteal and endosteal surfaces, and 

resorption modelling occurring on opposite cortices. The target is to reach the 

normal adult functional morphology but also to respond to variations in mechanical 

loading patterns. Two types of modelling cortical drifts have been proposed in long 

bones.  Linear drift accounts for the bone changing position in relation to a straight 

line (e.g. transversally to the bone axis) (Frost, 1973), and curvilinear drift which is 

referred as modular change of the drift direction on one or both envelopes resulting 

in modifications in shape-size (Maggiano, 2012) (Figure 2.4). Formation and 

resorption modelling are coordinated at the metaphysis of bones (coupled but 

independently local activity) resulting in an increase in longitudinal growth which is 

associated to endochondral ossification.  Radial growth is related to the modification 

of bone shapes: a reduction on the metaphysis in favour of the expansion of the 

medullary cavity is seen in long bones. This mechanism allows a modification of the 

cross-sectional geometry to maintain the medullary cavity in balance with the bone 

axis (Maggiano, Maggiano, Tiesler et al., 2016).  
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Differences in morphological adaptation also exist depending on the type of 

bone as flat skeletal elements do not experience diametrical modelling. Sex 

differences driven by hormonal stimulation – mostly related to puberty and aging –  

and other factors such as mechanical loading can also alter modelling drifts  (Allen 

and Burr, 2013). In summary, these complex mechanisms will adapt the whole bone 

not only to the required curvature but also to its relative position in relation to the 

articulations and to the other elements of the skeleton. 

 

Figure 2.4 Modelling formation and resorption. Left: resorption occurring at the 

metaphysis and formation on the diaphysis; longitudinal growth at the epiphyseal 

plate. Right: formation modelling at the periosteal envelope and resorptive modelling 

at the endosteal envelope (top); modelling diaphyseal drift with displacement towards 

the left (bottom) (Adapted from Martin et al. 2015: 98 fig. 3.1). 

Remodelling is an episodic mechanism that consists on the replacement of 

older bone by coupled and coordinated activity of osteoclast and osteoblasts. The 

discrete bone unit (bone structural units, BSU) that is created by osteoclasts and 

osteoblast activity is the secondary osteons or Haversian systems  (Parfitt, 2002; 

Martin et al., 2015). The main goals of remodelling are mineral homeostasis, bone 

repair and mechanical adaptation.  

Remodelling is a quantum concept occurring throughout life in which specific 

bone sites are replaced with new bone by the activity of groups of osteoclasts and 

osteoblast -known as basic multicellular units (BMU). BMUs move in a three-

dimensional plane creating and refilling a tunnel through the cortical bone or through 
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trenches on the trabecula (Frost, 1969; Parfitt, 2002). The activity of a BMU is 

accomplished by a sequence of three main phases: activation, resorption and 

formation (A-R-F). In the activation phase (or origination phase as Parfitt proposed 

(2002), osteoclasts precursors are recruited to the bone surface where 

differentiation and fusion of osteoclast occurs. Before mature osteoclasts can start 

bone resorption, the lining cells retract to expose the bone matrix and to leave space 

for osteoclasts. Afterwards, bone resorption by the formation of a Howship´s lacuna 

appears in a longitudinal section seen as a cutting cone that is about 150-300 um 

diameter to 300 um in length (with variations depending on the remodelling sites) 

(Parfitt, 1993). The diameter of the cutting cone determines the size of the osteon 

viewed in cross-section. An approximate resorption rate will follow with 40-50 

μm/day in length and 5 μm /day radially (Martin and Burr, 1989). There is a 

transitional stage between resorption and formation known as the reversal phase in 

which a group of mononuclear cells smoothen the border of the resorption bay 

creating the cement or reversal line as a delimitation from the old bone matrix 

(Martin et al., 2015). Both resorption and reversal phases take around 30 days to be 

completed. Osteoblasts lay at the edge of the cutting-cone and start depositing the 

concentric lamellae (formation phase). Over 2-3 weeks, osteoblasts start osteoid 

mineralization by depositing mineral and phosphate ions within and between the 

fibres completing about 70% of the total mineralization; finally, the mature mineral 

will be deposited in a slower rate (up to 1 year). Upon formation completion, the 

quiescence phase takes place in which secondary osteons maintain their 

homeostatic and metabolic functions (Martin and Burr, 1989). The remodelling cycle 

lasts for 2-4 months in healthy individuals (average of 90 days from resorption to 

completion of the osteon) with time alterations produced by pathological conditions. 

Figure 2.5 illustrates the formation and timing of the “cutting cone” with a scheme of 

the A-R-F phases. 
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Figure 2.5 Left: cutting cone longitudinal section. Right: Schematic illustration of bone 

remodelling cycle starting from lining cells on the quiescent bone surface to osteoblast 

depositing proteins followed by mineralization. Osteocytes (stars) regulate all the 

resorption and formation processes. Adapted from Chamberlain and Forbes (2005: 44 

fig. 1) and Bellido et al. (2014: 28 fig. 2.1). 

Two types of bone remodelling can be differentiated. Targeted bone 

remodelling is a mechanism activated by a specific signal event on a specific focus 

which can be the response to microdamage and/or osteocyte apoptosis (e.g. 

microcracks disrupting the osteocyte-canalicular system followed by an activation of 

osteoclasts resorption) (Burger and Klein-Nulend, 1999). This remodelling accounts 

for bone repair accelerating bone turnover on a specific damaged site. The second 

type is known as stochastic remodelling and responds to non-specific signal and 

location (although probably not completely random) in order to balance calcium 

homeostasis; only 30% of the remodelling is targeted remodelling (Burr, 2002). 

Microdamage seems to activate osteocyte apoptosis in which osteocytes –

before they undergo programmed cell death – secrete factors that target the 

activation of osteoclasts, and therefore, the resorption point stars (Allen and Burr, 

2013). The lining cells are also suggested to play the role of initiators of the new 

BMU formation being activated by stress or microdamage accumulation and 

producing also intracellular signalling molecules (cyclic AMP) (Eriksen, 2010). Direct 

and indirect influence of hormones in remodelling – and modelling – like PTH and 

glucocorticoids (stimulate bone resorption/loss), and Vitamin D and calcitonin 

(stimulating bone formation/mass) may also activate the formation process (Rodan 

and Martin, 1981; Eriksen, 2010). 
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One of the main functions of bone remodelling is bone integrity maintenance. 

Frost (1964) brought to attention the possibility of bone remodelling as a concept of 

bone turnover occurring in anatomically discrete foci. Remodelling processes are 

carried out on the four bone envelopes: periosteum, endosteum, trabeculae and 

Haversian (intra-cortical). Trabecular bone remodelling presents variations 

compared to the other envelopes in which a cavity known as the bone remodelling 

compartment (BRC) appears with the initiation of bone resorption and closes when 

bone formation finalises. The BRC is identified as a multiple purpose platform where 

minerals and matrix constituents exchange, and bone cell recruitment and 

coordination of BMU activities take place (Hauge et al., 2001). Osteonal BMUs in 

human adult bone is replaced in 3% every year, while remodelling in the endosteum 

and in the trabecular bone accounts for BMUs in “half-moon” shape erosions (hemi-

osteon) with a rate of approximately 25-30% of trabeculae being replaced per year. 

Also, the trabecular remodelling takes longer than the cortical remodelling, with 

approximately 200 days to finish the whole process with most of it being bone 

formation (Kular et al., 2012).  

The periosteum has an increase in the remodelling rate with age with the 

surface becoming scalloped and losing some bone mass, while the endosteal 

envelope has a similar remodelling rate as the trabecula with some pits that are not 

eventually filled with new bone resulting in an expansion of the medullary cavity 

(Martin et al., 2015). Mechanically, it can be said that intra-cortical remodelling 

(formation of Haversian systems) does not have a clear advantage in comparison 

with primary bone: the newly formed Haversian systems are even weaker in tension 

that the primary osteonal structures due to the quick deposition of minerals in the 

first stage of the formation phase (Currey, 1959). Remodelling rate slows down after 

the growth period has been completed and it is highly variable during adulthood. 

Sex, diet, hormones, genetic and environmental factors affect remodelling of the 

human skeleton (Stout, 1998). Bone cells involved in the remodelling process have 

a coordinated and coupled but not necessarily balanced activity at the BMU; either a 

positive or negative imbalance can cause excessive bone deposition or removal 

(Allen and Burr, 2013). An increase in bone remodelling rates is observed in women 

with menopause due to the decrease in estrogen, while both sexes experience a 

lower rate in remodelling after the seventh decade of life (Martin and Burr ,1989; 

Gosman et al., 2011). 
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Remodelling events will accumulate in a given bone area throughout age. As 

noted above, bone remodelling produces quantifiable defined microscopic features 

appearing as the individual ages, and it is one of the mechanisms assessed for 

aging histomorphometric analysis (Kerley, 1965). However, it is not only the 

biological age of the individual what is represented through the remodelled 

microstructures but also the mean tissue age (MTA) of that specific bone domain 

(Frost, 1987c; 1987d). This matter will be discussed in the next chapter. 

2.8. Theories about bone biology and remodelling 

As discussed at the beginning of this chapter, since the 17th-18th centuries, 

scientists were able to link bone internal structure to its mechanical properties. In the 

last two centuries, further investigations and the advances in experimental research 

gave the crucial insights into bone relation not only to mechanics, but also to 

genetics and chemical components. In order to understand where we are now in our 

understanding of bone modelling and remodelling, it is important to review the 

evolution of the theories and how the current concepts of both mechanisms have 

been built, modified and improved through time.  

During the 19th and the 20th centuries, new perceptions about bone physiology 

and adaptation were defined. The adaptation of bone to stress and the environment 

was first introduced through the idea of bone physiological homeostasis and the role 

of bone cells responding to the mechanical environment. It was Julius Wolff (1836-

1902) who suggested that mechanical stress applied to bone changes its structure 

and these changes respond to specific mathematical rules. He understood that bone 

mass and architecture (internal architecture and external structure) is modified by 

changes in the form and function (or only function) of bone suggesting hence an 

adaptation to the mechanical environment surrounding it (Ruff et al., 2006). In a 

simplistic manner, bone cells would respond to stress and react by adding or 

removing bone where and when needed (Robling et al., 2013).  

Since the 1980s, Harold Frost carried out extensive research on the question 

of bone adaptive modelling and remodelling (Frost, 1983; 1987d). Frost´s 

hypothesis, known as the Mechanostat theory, is explained with the following 

parallelism: a thermostat that would be turned on or off depending on a certain 

temperature (physiological window in the case of bones) (Frost, 1987a). A relation 

between bone and bone mass through the mechanostat can be established (Figure 
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2.6). According to his theory, bone modelling would add new bone onto a bone 

surface. Higher or lower levels from the minimum effective strain modelling point 

(MESm, around 1.500-2.500 microstrain for mechanically controlled modelling) 

would turn modelling drifts on or off, respectively. Strain higher than the MESm 

activates modelling and provokes an increment in the bone mass, while lower 

strains do not have any bone mass effects. On the other hand, bone remodelling 

does not imply always the replacement of all the bone that has been previously 

removed (A-R-F seen in Haversian system), and thus, an increase in remodelling 

may decrease bone mass (Frost, 1997; 1998b). In bone remodelling, peak bone 

strains lower than the MES remodelling threshold (MESr) will increase remodelling 

by the acceleration in the recruitment of BMU, while higher strains will produce a 

decline in the BMU recruitment, and thus, bone will be retained. In other words, if 

the strain is above the set point, it would adjust existing trabecular and cortical-

endosteal bone in order to preserved bone mass (even resorption and deposition). 

This according to Frost is referred to as “conservation-mode” (Frost, 1998b: 115).  A 

decrease in trabecular bone mineral density and an elongation of the medullary 

cavity will occur if the mechanical usage is below the threshold range reducing bone 

strength (bone mass decreased due to BMUs resorption higher than deposition, 

“disuse-mode”) (Frost, 1998b: 115). The disuse mode causes any types of adult 

osteopenia and it could be the reason of observed 40 % bone mass loss from young 

to 75 years old adults in which intracortical porosity increases specially in the 

marrow cavity but there is not decrease in bone external diameter (Frost, 1987a; 

1998b; 2000). Modelling and remodelling have opposite responses to mechanical 

usage with modelling being stimulated with over 2.500 microstrain and remodelling 

activation reacting to strains falling below 200 microstrain. In summary, when 

modelling increases, remodelling is inhibited (producing bone deposition on the 

periosteum and retaining the endosteal expansion); and when remodelling is 

increased, modelling is inhibited (vice versa effect with an expansion of the marrow 

cavity) (Martin and Burr, 1989; Robling et al. 2014). 
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Figure 2.6 The Mechanostat theory: bone responds to mechanical usage (MES) 

altering its structure and influenced by the mechanical thresholds 

(modelling/remodelling); bone mass will change accordingly (Adapted from Frost 

(1987a: 6). 

The main proposal from Frost (1987a) was that mechanical usage would 

induce bone to change its mass according to changes in the strain magnitude. 

Three mechanisms are involved in the theory of bone adaptation controlled by 

mechanical usage: growth, modelling and remodelling led by the control and 

coordination of bone cells responding to the mechanical usage under the normal 

physical activity of an individual. The sequence of events is based on mechanical 

loading placed on the bone generating primary signals detected by bone cells that 

will send secondary signals to activate the different mechanisms (see below). Early 

in 1960s, Frost already suggested that microcracks produced by repeated strain 

might initiate bone remodelling (as noted earlier) due to the disruptions that they 

produce in the canalicular net (Frost, 1960). It is worth mentioning that these 

biological mechanisms that are guided ultimately by mechanical factors (specially 

strain) require non-mechanical factors to function, and that muscles strength would 

also play an important role for bones in relation to development, health and 

pathologies (Frost, 2004). Regarding baseline factors involved in his theory, 

biochemical agents or metabolic disorders can evoke changes in the set point 

increasing or decreasing modelling and remodelling even if the strain threshold has 

remained stable (Frost 1987; Turner 1999) (Figure 2.6). Specific hormonal 

imbalances or medication treatments may therefore alter the “normal” points of 

strain causing alterations and changing consequently the thermostat set-point 

(Martin et al., 2015). 
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A further step in the discussion led to the study of cell behaviour in order to 

understand how and why cells receive specific signals, and how bone deposition 

and/or resorption (refer here as change in bone mass) react consequently 

transforming bone structure and improving bone strength (Turner, 1999). 

Experimental theories could now explain the fact that different sampling sites within 

the same bone have different MES thresholds. According to Turner (1999), Frost´s 

Mechanostat model did not acknowledge that bone loss rate due to disuse 

eventually slows down with time. This new approach known as the “cellular 

accommodation theory” proposes that bone cells are very reactive to transients in 

their environment. Hence, they account for a capacity of adaptation to these 

environmental changes that would make them readjust their sensitivity levels and 

accommodate to a new steady rate learning from previous loading experiences 

(cellular memory) (Turner et al., 2002). This adaptation of cells to the local strain 

environment would change the strain threshold depending on the specific bone site 

explaining lower set-points of skeletal elements that bear minimal mechanical loads. 

Frost´s Mechanostat model explained that certain hormones and biochemical 

agents involved in modelling and remodelling processes could alter the threshold of 

the Mechanostat (Frost, 1987a). Turner pointed out how certain hormones are 

responsible of the sensitivity of bone to mechanical strains suggesting that 

mechanical loading is not the only principal motor of bone formation as Frost 

claimed (Turner, 1999). 

The Utah Paradigm compromises a series of scientific meetings about bone 

physiology motivated by intensive research carried out by a number of inter and 

multi-disciplinary researchers (biomechanics, biologists, histologists). 1960 research 

on growth, architecture, strength and health of the skeleton after birth was believed 

to be influenced by biomechanical factors controlled by bone cells (Frost, 2000). 

Although other physiological processes were acknowledged to influence the 

skeleton, the paradigm considers nonmechanical agents (e.g. growth hormones, 

genetics, vitamins, minerals…) predominant for bone mass and strength changes 

(Jee, 2005). With the 1987 Mechanostat as the key concept, skeletal elements not 

only refer to bones; the importance of muscles, ligaments, tendons and all tissues 

related to the skeletal system are also considered. In view of the new paradigm, 

bone is treated as a tissue, organ and at its cellular level further exploring the ideas 

from Frost about loading forces (Frost, 1999).  
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In general, these new concepts suggest that non-mechanical factors and 

biological mechanisms for bone adaptation work jointly in order to maintain the 

functional demands of the skeletal elements with the latest group controlling 

changes in bone architecture and strength (Frost, 1999; 2000). At birth, there exists 

some predetermined baseline conditions that are the effect/result of gene 

expression patterns. After birth, bone mechanical adaptation rules those biological 

mechanisms in time and space and the established biological responses to 

mechanical demands will dominate the spectrum of how, when, how long and where 

these responses will be activated or not and with what intensity. Non-mechanical 

factors (as sex, age, minerals, vitamins intake and hormones) are essential as they 

modulate or influence bone modelling and remodelling but do not replace the 

postnatal mechanical control (Frost, 2003). Consequently, mechanical usage affects 

remodelling and modelling in around 40% while only 3-10% will be determined by 

other non-mechanical factors (Frost, 1998a; 2001). The non-mechanical agents 

have also a direct effect on bone cells participating in biologic mechanisms. Some 

evidences support that non-mechanical agents and mechanical factors may interact 

with the first group altering the mechanical set point or having an effect of the 

mechanical stimuli (Frost, 1987c; 2000).  

As seen at the beginning of this chapter, muscles in coordination with bone 

play an important role in bone physiology; muscle development is correlated with 

bone development with strong muscles leading to strong bones and muscles 

controlling most of the voluntary mechanical loads. Moreover, a genetic correlation 

between muscle mass and bone mass ensure that both elements´ strength are in 

accordance (Parfitt, 2004). Also, both hard and soft tissues are affected by any 

anomalous function in the mechanostat which may cause or trigger disorders like 

osteoporosis, hernias or ligament ossification, among others (Frost, 2000; 2004).   

2.9 Summary 

Bones are living elements that are influenced by a wide range of intrinsic and 

extrinsic factors. These factors determine in different degrees of expression bone 

composition, structure and architecture from the macroscopic to the microscopic 

level. Moreover, bones respond to intrinsic and extrinsic stimuli during development 

and growth, and throughout one´s live. The skeleton changes through time and 

these changes can be identified and assessed. A detailed discussion about bone 

remodelling mechanisms was here presented. Remodelling processes interpreted 
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and recorded applying bone histology, especially for age estimation methods, will be 

discussed in the next chapter.  
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Chapter 3 : AGE ESTIMATION AND BONE HISTOLOGY 

In disciplines such as bioarchaeology, osteo-archaeology, physical and 

forensic anthropology, the goal of the expert osteologist is to obtain as much 

anthropological information as possible about the biological profile of the individual 

and/or the sample under study. The basic analysis involves sex estimation, age 

assessment, pathological conditions and ancestry.  

The research presented in this document focused on age estimation 

assessment. By definition, aging is the result of biological natural processes 

representing a skeletal decline which has hereditary influences and is conditioned to 

a certain extent by environmental factors (Nakamura, 1991). This chapter discusses 

age estimation methodologies to assess age at death on dry bones. First, an 

overview of general macroscopic methods will be presented. Secondly, histological 

techniques used for age estimation on long bones is debated, followed by a detailed 

discussion on costal and short skeletal elements histological aging methods. 

Intrinsic and extrinsic factors having an impact on the aging techniques will close 

this chapter. Other applications of bone and dental histological analysis are out of 

the scope of this thesis, but the reader is referred to Crowder and Stout (2012) for a 

further review. 

3.1. Macroscopic methods for age estimation 

The estimation of chronological age-at-death for juvenile remains relies on the 

gross observation of developmental and growth patterns on bone and teeth 

elements. Analytical methods based on the appearance of centers of ossification, 

dental age, long bones length and epiphyseal fusion are used for sub-adult age 

estimation (refer to Scheuer and Black (2004) for a full discussion).  

Age estimation in adults is based on the observation and assessment of 

degenerative changes in the skeleton. Maturity refers to the stage at which the adult 

function and form have been reached. The most commonly applied methodologies 

are based on the assessment of the following skeletal features: pubic symphysis, 

auricular surface, sternal end of the rib, cranial suture closure and dentition. The first 

three methods rely on degenerative changes on bone joints. Basically, 

morphological alterations that the specific age indicator gradually undergoes as the 

individual ages are recorded (Lovejoy et al., 1985a; Todd, 1920; Iscan et al., 

1984a,b). Cranial suture has always been controversial due to the high variability of 
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suture obliteration and large errors in age estimates have been reported; still, the 

method is commonly used in combination with other techniques (Meindl and 

Lovejoy, 1985; Byers, 2002). Among the macroscopic techniques, pubic symphysis 

and rib sternal end age estimation techniques were recommended as 

anthropological methods fulfilling the accuracy levels for forensic cases although 

with restrictions related to age cohorts and environmental influences on the 

expression of the age indicators (Ritz-Timme et al., 2000). A detailed description on 

gross-examination aging approaches is beyond the scope of this work and further 

details can be found in Lathan and Finnegan (2010); instead, a brief critic about 

methodological issues is here provided.  

It has been shown that around 60% of the variation observed in age markers 

is not directly correlated to age but to other parameters like hormones, vitamins, 

biomechanical markers and inter-population variation which prevents the 

applicability of the methods as universal standards (Mays, 2015). Hence, the 

mentioned factors might alter the timing at which the degenerative changes occur, 

and thus, age standards derived from one population may not be applicable to 

another one (Lathan and Finnegan, 2010). Even individuals with the same 

chronological age may show different patterns due to behaviour or plasticity. 

Different accuracy rates have been achieved while developing aging methods on 

diverse sample populations, and numerous validation studies have been performed 

on different ethnic groups reporting variability in age trait expression due to secular 

trends or geographical location  (Buckberry and Chamberlain, 2002; Igarashi et al., 

2005; Savall et al., 2015). Not only the inherent variation in aging processes 

supposes a limitation, but observer´s subjectivity may also introduce certain biases 

(Garvin et al., 2012). Refinement of the descriptions or changes in the scoring 

system have improved methodological problems and solved inherent issues related 

to wide age ranges or errors arising from sexual dimorphic differences (McKern and 

Steward, 1957; Katz and Suchey, 1986; Nawrocki, 1998; Mulhern and Jones, 2005). 

Some authors have modified the age estimating techniques by the addition of 

different mathematical procedures (Samworth and Gowland, 2007) or updating the 

methodological approaches with the aid of new technologies (Stoyanova et al., 

2015).  

A recent study tested most aging methods on a Southeast Asian sample. The 

results demonstrated different levels of accuracy not only for specific methods but 
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also for different age cohorts (Gocha et al., 2015). The authors improved the 

accuracy rates by combining multiple indicators obtaining more precise age 

estimates as confirmed by other studies (Miranker, 2016). Nonetheless, the 

combination of several age markers may be done cautiously due to problems arising 

from adding traits from different samples with non-comparable age distributions, and 

from combining methods developed under different methodological assumptions 

and/or statistical foundations (Garvin et al.,  2012).  

3.2. Micro-anatomical features used for age estimation 

Bone histomorphometry allows for the quantitative interpretation and 

assessment of bone microstructures throughout an individual´s life spam. It is an 

important research tool for the analysis of bone remodelling dynamics, not only in 

forensic anthropology but also in clinical and pathological studies.  

3.2.1. Bone histomorphometry and age: an overview of primary parameters 

Age-dependent changes occur in bone microstructures might relate to 

morphology, size, geometry and frequency number. There is a wide range of studies 

showing how different types of bone histological features (e.g. types of osteons, 

area of remodelled bone…) can be applied to estimate age depending on the 

skeletal elements, sampling location, sample under study and other intrinsic-

extrinsic factor affecting the outcome of the research (Stout and Gehlert, 1982; 

Ericksen, 1991; Pavón, 2007). Due to the amount of data available, this section will 

focus on the most commonly – but not limited to – age related histomorphometric 

parameters. Methodological variation between studies must be considered – e.g. 

different description of the same microstructures – when a specific aging technique 

is applied.  

As part of the normal aging process, a decrease in bone mass is observed 

after the fourth decade of life. This bone loss implies age related changes in bone 

macro- and micro-architecture, structure and composition which involved: bone 

resorption and bone formation uncoupled activities, accumulation of microdamage, 

changes in cross-sectional geometry due to expansion of the medullary cavity and 

cortical thinning, accompanied by changes in mineral deposition and protein content 

(Livshits et al., 1998; Brickley and Ives, 2008). The typical appearance of cortical 

bone cross-section accounts for lamellar bone at periosteal and endosteal surfaces 

(outer and inner margins) with the middle area occupied in different proportions by 
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Haversian systems and interstitial lamellae. Primary vascular canals (primary 

osteons) reflect the deposition of primary bone with their correlation to age being 

included in aging techniques for sub-adults (Streeter, 2005; Agnew, 2006). Sub-

adult cortical bone consisting of primary lamellae and primary osteons is replaced by 

secondary bone through modeling and remodeling activity. Resorption spaces are 

the first sign of secondary osteon creation, and their number seems to increase as 

age increases; nonetheless, some authors did report none or different age related 

changes (Sedlin et al., 1963; Ortner, 1975). As already mentioned in the previous 

chapter, the main distinctive feature to discern between primary and secondary 

osteons is a histological delimited boundary known as the cement line. The ratio 

(fractional volume) between primary and secondary osteonal bone increases as 

primary bone is replaced by secondary bone (Figure 3.1).  

 

Figure 3.1 Different age stages showing changes on fractional volume of primary and 

secondary osteonal bone (study sample specimens); A: 6 years old (lamellae and no 

osteonal structures), B: 35 years old (large osteons and thick cortex,), C: 56 years old 

(small and numerous osteonal structures) (40x magnification). 

Morphology type of secondary osteons was also employed for aging methods. 

Researchers used the correlation between intact secondary osteons (type I) and 
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age owing that as chronological age advances, secondary osteons increase in 

frequency number as a result of an increase in bone remodelling rates. Both the 

reversal line and the Haversian canal must be partially unremodeled to be 

considered a secondary intact osteon (Robling and Stout, 2008). Osteon 

accumulation per unit area and the ongoing remodeling result in secondary 

fragmentary osteons which are commonly defined as osteons that – in different 

proportions – have been resorbed by the appearance of new osteonal structures. 

Aging causes the middle and periosteal fractions of bone to be filled by these 

features due to an increase in numerical osteonal density, while the endosteal 

lamellae undergoes a decrease in area as a result of endosteal cavity expansion 

and trabecular remodelling processes (Maat et al., 2006; Keough et al., 2009; 

Crescimanno and Stout, 2012).  

Other types of osteons depending on their morphology were shown to be 

correlated to age. Drifting osteons (waltzing osteon) exhibit a non-central  Haversian 

canal and a tail formed by lamellae: viewed in cross-section, the tail seems to be the 

remains of the transverse drift direction advancing through the cortex (Robling and 

Stout, 1999). Directional and non-directional drifting osteons can be discerned 

depending on the drift orientation during BSU formation (Crowder, 2005). Drifting 

osteons occupied more than half of the resorption area in individuals under 10 years 

old and decrease in number as age increases (Coutelier 1976; Robling and Stout 

1999). Drifting osteons may be a response for developing bones in order to maintain 

mineral homeostasis which is highly needed in growing individuals explaining their 

high frequency in sub-adults (Coutelier, 1976). Albeit, the relation between 

metabolic responses and this feature is still unclear (Robling and Stout, 1999). The 

author has observed drifting osteons in most decades of life in the sample under 

study but decreasing in number or being absent in over 70 years old individual, 

which is in agreement with other studies (Robling and Stout, 1999).  

Type II osteons (or embedded) are seen in cross-section as a small complete 

Haversian system sitting on an existing larger osteon and they may be caused by 

radial remodelling of the previous formed Haversian canal (Richman et al., 1979). 

The reversal line of the embedded osteon seems to be the result of growth 

reactivation after a high moment of stress (Stout, 1989). These osteonal structures 

might be produced by mineral exchange to maintain mineral homeostasis with an 

increase in their number with increasing age (Ericksen, 1991). However, their 
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numerical frequency was tested for any association with age with discrepancies 

arising for this feature (Richman et al., 1979; Yoshino et al., 1994).   

Double zonal osteons reveal a hypercalcified ring (arrest line) representing a 

moment of matrix secretion disruption which forms a boundary separating two zones 

with identical lamellae orientation (note that no reversal line can be seen in this 

frontier). Some studies showed either a positive or none correlation to age 

(Pankovich et al., 1974; Yoshino et al., 1994). 

Metric analysis of osteonal microstructures seem to be also related to age with 

parameters as area, perimeter and diameter of both Haversian systems and 

Haversian canals being commonly used in aging methods. Haversian systems area 

decreases as age increases while Haversian canal area shows an inverse 

correlation with age, fact that would explain intracortical remodeling processes being 

higher in old individuals with the associated increase in intracortical porosity (Britz et 

al., 2009). It is worth mentioning that Haversian canal measurements reported some  

controversial views (Thompson, 1980; Keough et al. 2009).  

Cortical and trabecular area aging changes exhibit a general decrease in the 

former one affected directly by the reabsorption at the endosteal margin produced 

by remodelling on the trabecular area (Chen et al., 2013). In age histological 

studies, total cortical area is used as a normalised reference measurement to 

compute composite parameters such as relative cortical area, among others (Martin 

and Burr, 1989; Stewart et al., 2015). Age changes observed in the cortical surface 

area are, to some extent, a biological mechanism observed in the whole skeleton 

with variation in their magnitude depending on the anatomical location.   

3.2.2. Histomorphometric research methods and methodological issues 

Bone histomorphometric methods range from the study of dynamic bone cells 

and function (dynamic histomorphometry) to the assessment of static bone 

microstructures (static histomorphometry). Static bone histomorphometry – the 

present study being based on stereologic analysis of cortical bone – consists of the 

study of bone microstructure through the use of optical microscopy to examine 

histological features in a 2-dimensional plane (Stout and Crowder, 2012). It is worth 

mentioning other technologies like micro-CT, MRI or spatial analyses software that 

allow the researcher to observed bone features on a 3-dimensional level (Rose et 

al., 2012; Maggiano, Maggiano, Clement et al., 2016). Not only a technological 
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improvement has been achieved; an effort have been made along the years to 

standardised the nomenclature – proposed by the American Society of Bone and 

Mineral Research (ASBMR) – and ultimately, to standardise terms cited in 

histological studies to help researchers to make comparisons between studies 

feasible (Parfitt, 1988; Dempster et al., 2013).  

Important considerations need to be brought to attention about the specific 

applicability of age estimation through histological analysis. Modeling during growth 

is responsible of most of the cortical and trabecular bone formation. As mentioned 

earlier, age-related changes in cortical bone do not have a steady rate throughout 

the individual´s life span; indeed, osteonal formation rate and bone turnover in the 

cortex are higher in individuals from 9 to 23 years old than in adults with rapid rates 

leading to the replacement of primary bone into secondary osteonal bone in the 

developing skeleton (Robling and Stout, 2008). During adulthood, frequency of BMU 

activation rates depends on specific mechanical or metabolic demands (Martin and 

Burr, 1989). Consequently, both intact and fragmentary osteons visible on a cross-

section at the time of death are not a representation of all the remodeling 

accumulated since birth. It is the reflection of the age of the given cortex rather than 

the chronological age of the individual (Stout and Paine, 1992). This is a 

combination of aging processes and the mean tissue age (MTA) of a specific bone 

domain which is determined by both secondary osteons accumulation and other 

factors such as physical activity, hormonal and metabolic influences and modeling 

drifts (Frost, 1987b; 1987c). Moreover, the so-called effective age of adult compacta 

refers to the observable accumulation of secondary osteons (intact and fragments) 

on a given bone sample (Stout and Jackson, 1990) that reflects the time at which 

cessation of cortical drifts and growth modeling have occurred, and the tissue has 

eventually reached maturity for adult compacta (Wu et al., 1970; Stout and Lueck, 

1995). Age estimates would therefore depend on this effective age and should be 

theoretically adjusted depending on the given area of bone tissue under analysis. 

To some extent, any type of secondary osteons are the evidences of 

remodeling events but as age advances and osteons start increasing in frequency 

number, they accumulate in the cortex erasing any traces of previous remodeling 

events. Osteon overlap (asymptote), in some occasions, implies that the new 

created osteons will completely refill the Haversian canal of the “old” remodelling 

event (Martin et al., 2015). Consequently, secondary osteon accumulation entails a 
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limitation for aging old individuals because remodeling events seen at the moment 

of death do not reflect the individual´s chronological age (Wu et al., 1970; Robling 

and Stout, 2008). The point at which osteon population density (OPD) – accounting 

of intact and fragmentary secondary osteon in relation to cortical area (Stout and 

Paine, 1992) – reaches asymptote depends on the bone under consideration, 

remodeling activation rates and other factors. For example, femora present a 

relatively older age OPD asymptote than ribs due to larger cortical area and a higher 

remodeling density variation along the cortex (Stout and Crowder, 2012). Above all, 

pathological conditions and other intrinsic and extrinsic factors will also alter 

remodeling rates producing variation in OPD asymptotic values (Stout et al., 1996). 

Regarding practical concerns, histomorphometric analysis relies on the 

preparation of thin-sections – both decalcified or undecalcified bone samples, 

stained or unstained depending on the variables to be assessed – in an histology 

laboratory (see next chapter for thin-section production). The observation of the 

organization and structure of bone tissue under the microscope – transmitted and/or 

polarised light – allows histological interpretation and parameters assessment. 

Morphometric analysis can be carried out by taking measurements using manual 

grids and graticules (e.g. Stout and Paine (1992), although new technologies 

provided the incorporation of computerised methods (Trammell and Kroman, 2013). 

In spite of the fact that the use of computer software helps to quantify 

microstructures faster and more accurately, it has been shown that the levels of 

inter-observer error are still high risking the reliability and repeatability of the 

techniques, and the use of both microscope and microphotographs have been 

recommended (Crowder et al., 2012). Due to the high number of features to be 

counted (e.g. when assessing osteons number frequencies), there is always a 

certain error introduced due to the imprecision of the observer. Alternatives in the 

modality of quantification were proposed through changing frequency number by 

percentages of bone area (Ahlqvist and Damsten, 1969), but some authors 

suggested that it was not as reliable as osteon counting (Stout and Stanley, 1991). 

Besides, discrepancies in the parameters descriptions may be a source of error as 

different authors refer to the same structure using different definitions (Kerley, 1965; 

Ortner, 1975; Goliath et al., 2016). 

As it will be discussed in the next section, methodological issues arising from 

bone sampling area suggest that original methodology sample sites must be apply 
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when replicating any histological method due to errors introduced by remodeling 

rates variability between anatomical locations (Tersigni, 2005). But recent studies 

reported low variation between different rib numbers and age (Crowder and Rosella 

2007). Additionally, even within the same cross-section, the distribution of 

histological structures on periosteal or endosteal regions would vary as a result of 

remodeling rates occurring at different paces depending on the bone area (Jowsey, 

1966). It is worth mentioning that the feasibility of the method may be affected by the 

magnitude of the bone read.  Rib and femur cross-section areas differ from 10 mm2 

to 300 mm2, and thus, different methodological approaches can be applied. 

Furthermore, core samples can be extracted from the skeletal element to avoid 

endless counting of features and large areas of bone removed (Thompson, 1979). 

Regarding skeletal sample matters, aging techniques must be ideally developed 

from a reference sample that represents the demographic structure of the broader 

population (Aiello and Molleson, 1993). Also, reference sample and target sample 

should have similar age distribution and be ethnically close enough to prevent inter-

population remodeling variation affecting the accuracy of the age estimates (Stout, 

1998).  

Despite several concerns related to histological methods and age estimation, 

it is encouraging to explore new possible approaches to further investigate and 

improve the state of art. In the next section, studies dealing with research issues 

and other anthropological matters will be discussed. 

3.3. Bone histomorphometry for age estimation: methods and bones 

3.3.1 Long bones  

Long bones have been widely used for developing histological aging methods 

(Table 3.1). Among the long bones, the femur is an ideal skeletal element for 

histological analysis since its toughness makes this specific bone likely to be 

recovered during excavation and the anatomical features over the femur allow the 

recognition of topographical bone areas for sampling locations.  

In the 1960, Jowsey (1960) recorded age changes of histological features on 

femoral cortical bone. In this study, no difference in remodeling between the four 

different topographical areas of the cortex within each section was found fact that 

would be argued in further research. Although this study used a rather small sample 
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(N = 24), it was the promoter of the quantification of age microstructural changes on 

this skeletal element. Partly based on the previous study, histomorphometry for 

aging the skeleton was applied by Kerley (1965) through the analysis of all the three 

lower limbs bones. Preliminary observation allowed the author to select the most 

representative areas for histological analysis which seemed to be the anterior, 

posterior, medial and lateral outer third of the cortex. The advantage of these 

sampling areas entails that endosteal bone resorption that occurs with age will not 

affect the observation of the parameters. Kerley carried out the quantification of 

intact and fragmentary osteons, percentage of lamellar bone and non-Haversian 

canals on 126 sections of femora, tibiae and fibulae. Using linear and curvilinear 

regression analysis to examine the data, the author noticed that all variables 

behaved in the same fashion for the three bones: intact and fragmentary osteons 

increased in number with advancing age, and the remaining variables decreased 

from childhood to elderly. The best correlation found was between age and intact 

and fragmentary osteons for all bones, although the best accuracy produced by a 

single parameter was reported for fibular fragmentary osteons. A test of the 

technique was run on a set of 56 specimens using an age profile chart –

recommended by the author when multiple bones are available for analysis – which 

provided estimates falling within ±10 years from chronological age for the entire 

sample. Kerley pointed out factors such as taphonomic processes of poorly 

preserved archaeology material or specific pathologies that might affect parameters 

quantification and the reliability of technique.  Neither sex nor ethnicity demonstrated 

any effect on the histological parameters. In both cases, the scarce number of 

females and specimens other than Caucasoid in the sample may have had an 

impact on the outcome. Several problems arose for the applicability of this 

methodology. In first place, Kerley did not specify the exact bone area that must be 

read; he just stated that the selected fractions of bone “were representative” which 

seems to be a subjective criterion (Kerley, 1965: 154). Secondly, the author 

recommended the microscopic approach over the macroscopic assessment for old 

age ranges, suggestions that appears to be non-feasible as we will see in the 

upcoming studies. 

Methodological problems observed in this early research drove Ahlqvist and 

Damsten (1969) to conduct a validation study on 20 modern specimens finding the 

quantification of the variables unreliable. Instead of counting structures, a method 

simplification by assessing microstructure percentage – grouped in increasing or 
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decreasing features in relation to age – was made and using a squared-ruled field 

the authors were deemed to avoid missing areas on the subperiosteal bone area. 

Moreover, the field of view was shifted 45 degrees to evade the linea aspera, and 

thus, avoiding variation observed over the muscle attachments of the crest. Despite 

the good results on the estimates (standard error of the estimate (SEE) = ± 6.71) 

and the helpful contribution in constructive critic about Kerley’s technique (1965), 

caution should be taken due to the small sample size. Kerley and Ubelaker (1978) 

also published a revision of Kerley´s original methodology (1965) providing a 

correction of the field diameter and a final revision of the regression equation. In 

1982, Stout and Gehlert tested the revised method on 20 femora from autopsy 

samples.  They concluded that histological structures are not spaced evenly through 

the cortex and therefore the specific field of view of the original technique must be 

applied to ensure that the same microstructures are quantified; by doing so, an 

improvement in the method reliability is accomplished (Stout and Gehlert, 1982). 

This sampling error concern has been also discussed by others (Lynnerup et al., 

2006). 

Stout and Stanley (1991) used radius, tibia and fibula midshafts from 36 

cadavers based on Ahlqvist and Damsten´s technique (1969). Topographical 

variation was tested on the radius based on the assessment of four sampling areas 

within the same thin-section in comparison to results obtained from the entire 

surface area, and a significant age correlation was reported only for the latter.  

Within the same individual the variables under study on the three bones showed 

statistical differences suggesting that bone turnover variability does exist among 

different skeletal elements. High correlation with age for osteon counts was reported 

and osteonal bone percentage was statistically significant only for the upper limb. 

The authors noted that the research did not fulfil the requirement for the generation 

of age prediction formula. Instead, it meant an input into the continuous 

development of histological methods exploring concerns such as the choice of an 

appropriate sampling location (Ahlqvist and Damsten, 1969).   

Another test of the histological variables proposed by Ahlqvist and Damsten 

(1969) and Kerley (1965) was carried out by Stout and Gehlert in the 80´s 

demonstrating that Kerley´s formulae performed more accurately for the entire 

sample (Stout and Gehlert, 1980). Under and over 60 years old age cohorts, 

however, resulted in one or another technique performing more accurately 
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depending on the age groups. This outcome might be due to intrinsic 

methodological issues as sampling area, inter-population specific variation or 

differences on age distribution between the samples. This research reported no 

statistical significance between observers suggesting high precision of the methods 

– as shown somewhere else (Keough et al., 2009). This assertion is in 

disagreement with Lynnerup et al. (1998) who reported high levels of inter-observer 

error for specific parameters regardless of the degree of observer experience. This 

last study suggested intrinsic methodological problems related to the variables 

under use rather than other sources of error. Osteons fragments quantification 

seems to be problematic with two major concerns arising: the parameter is a direct 

representation of aging for middle adults thus it must be present in the analysis, and 

secondly, the inclusion of intact and fragmentary osteons density do not solve the 

problem but instead it obscures the assessment.  

Further validation of Kerley´s method (Kerley, 1965) was performed by 

Lynnerup et al. (2006) modifying the original technique by using stereoscopic 

techniques. The bias introduced by the nature of the original method is reduced by 

the random selection of small fields of view avoiding error in topographical selection 

and in variable quantification. Age correlation between secondary intact osteons and 

age was found after exclusion of one outlier although a larger sample size is 

required to confirm the results. As it will be discussed, the unsystematic selection of 

fields presented here may introduce other problematic issues like intra cross-section 

variation.  

This random pattern in the selection of the bone area sampled within the 

cross-section was tested years before by Singh and Gunberg (1970) using core 

fragments of mandible, femur and tibia of over 40 years old male specimens (N = 

59). The sampling area selected was around 1x1 cm of the cortex of the anterior 

midshaft femur and tibia, and from posterior border of mandibular ramus. Three 

parameters were assessed on two microscopic fields from the anterior periosteal 

third (no exact sampling provided).  All variables had certain correlation with age 

and variability between bones was found when comparing the parameters frequency 

and distribution. However, comparison is not strictly applicable due to differences in 

sample size and age distribution between the three skeletal elements within the 

sample. As the authors noticed, there emerged a confrontation between this study 

and previous research regarding age effects on the Haversian canal size (e.g. Barer 
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and Jowsey (1967)) with the present study observing a decrease with age in the  

Haversian canal diameter. From all the bones, mandible provided the best results 

with standard error of ± 2.5 years from known age which contradicts later studies 

that did not show such a high correlation (Drusini and Businaro, 1990).  

Thompson (1979) applied the same core extraction procedure on a sample of 

individuals over 50 years old using  both lower and upper extremities and both 

histological and non-histological parameters. Apart from the advantage of reduction 

of bone damage, the author included specimens with pathologies known to alter 

bone turnover – even though separated formulae were generated – under the 

assumption that is likely that no clinical information is available in forensic cases. 

Stepwise regression analysis selected osteon area as the variable with the highest 

accuracy for all the skeletal elements. This variable was also found to accurately 

age individuals over 55 years old in other long bones (Thompson and Galvin, 1983) 

and an overall high age correlation somewhere else (Watanabe et al., 1998; Han et 

al., 2009). Thompson´s method (1979) was validated on a Japanese sample 

obtaining higher error rates than the reported by the original study. The author 

included new variables to improve the accuracy but it seems that ethnicity and the 

skewed age distribution of the Asian sample may have be the cause of this poor 

results (Narasaki, 1990). Modifications of the core technique were described 

recently with a less destructive procedure recommended for fossils (Stein and 

Sander, 2009). 

Chan et al. (2007) examined regional remodeling variation – within and 

between sections – along the midshaft of 5 male femora. The afore mentioned 

Thompson´s core method (1979) was applied removing sections of bone from 

anterior, posterior, medial and lateral margins analysing four consecutive fields 

within these sampling areas. Four parameters were assessed. Inter-section variation 

produced age estimates that were not statistically significant when applying the 

original technique with the exception of the posterior shaft area for all five sections. 

Moreover, the four selected sampling areas were compared to their corresponding 

topographical areas along the femoral shaft producing age estimates statistically 

different for most of the midshaft and mid-distal shaft sections likely to be produced 

by muscle attachment strains (Sobol et al., 2015). A comparison of the estimates 

obtained through all the sampling locations and the original study midshaft location 

suggested the use of the anterior portion as the suitable area due to less variability 
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along the femoral shaft length, although other studies reported different results 

(Tersigni, 2005). This type of research highlights the importance of validating 

existing studies, to correctly apply the methods and ensure accurate results. 

Several studies have also examined whether spatial variation or the means of 

variable quantification (e.g. stained or unstained section or counting versus 

percentage parameters) might have an impact on the reliability and feasibility of 

histological aging methods on long bones.  

Spatial variation was investigated by Iwaniec and colleagues (1998) who 

sampled several subareas from a total area of 60 mm2 of the anterior midshaft femur 

of 35 Inuit and Pueblo agriculturists. The sampling area was divided into columns, 

and intact and fragmentary secondary osteons were counted to calculate osteons 

density.  The results suggested that small portions of the midshaft representing only 

15% of the total area sampled could predict up to 95% of the total OPD, although 

more or less representation was reported given specific sub-areas. Thus, reducing 

the observed bone sampled might be feasible and advantageous implying less data 

collection quantity and time, and lower observer error. Some authors disagreed by 

considering that a reduction of the area read as an increase of the error (Stout 

1989). Whether this pattern is also observed over the entire cross-section 

topography in large bones such as femora needs further investigation.  

A technical approach performed by Martrille et al. (2009) investigated both 

thin-section staining and aging regression analysis on midshaft femora of 59 

specimens. The authors advised that specific staining may facilitate the observation 

and interpretation of the histological features that are frequently difficult to discern. 

Computed tomography is applied for reading automatically the variables through 

microphotographs of 20 different subperiosteal fields. The authors recommended 

the use of multiple fields, although unfortunately, no detailed topographical 

description was provided. The highest correlation with age for all ages was reported 

for fragment secondary osteon density over 20 fields and the most accurate 

estimates were obtained for age cohort less than 70 years old. Watanabe et al. 

(1998) examined whether the quality of osteons observation was dependent on thin-

section preparation procedures reaching the conclusion that features demarcation 

was optimised with a specific staining. Osteon perimeter showed the highest 

correlation with age while stepwise multiple regression provided the best 

combination of variables (fragment counts, osteon perimeter and Haversian canal 
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length) with a reported standard error as high as 6 years from known age. As the 

previous study stated, this research found higher standard error among the oldest 

age cohorts. 

Parameters quantification were explored through body size and percentage of 

non-remodeled bone on three sampling locations on the most anterior part of 162 

Dutch femora (Maat et al., 2006). A new approach in microscope lighting is 

explained and used to identify the lamellae. Inter-observer error seems to be low 

although inexperienced observer disagreement was remarked which was reported 

by previous studies (Lynnerup et al., 1998). Micro-anatomical differences of bone 

between sexes were not statistically significant; yet, adding cadaver length to the 

equation improved the SEE to ± 9 years supporting, other studies (Stout et al., 

1994). 

A sample of 72 Korean cadaver femoral sections from individuals over the age 

of 35 years was analysed by using the previous staining procedures and a 

modification of Maat et al.´s method (Han et al., 2009). The histological variables 

were analysed and averaged on five subperiosteal areas of the most anterior part of 

the femoral cortex. As in the previous study, statistical analysis did not show any sex 

differences although there was a low representation of females under 50 years of 

age; a combined formula for males and females was generated using linear, multiple 

and stepwise regression equations with the best variables for age estimation 

including OPD and secondary osteon area. Keough and colleagues (2009) tested 10 

histomorphometric variables on femora cores from a 146 South African sample of 

low socioeconomic background. Only six out of the ten variables used in the 

research achieved moderate to low correlation with age. Two variables showed 

statistical significance between sexes and the reported SEE was as high as 15 

years suggesting than other factors rather than the expression of age in the 

histomorphometric variables may have affected the method´s accuracy. Poor health 

conditions have been proven to impact aging methods in other studies (Paine and 

Breton, 2006).  

A considerably large sample of 328 femora from mixed ethnicity individuals 

was examined by Ericksen (1991) to create a new histological age estimation 

method using only the anterior cortex. Apart from the already mentioned variables, 

resorption spaces and type II osteons were assessed and both remodelled and 

unremodelled bone percentages were calculated on both photographs and 
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microscope views. In summary, remodelled and unremodelled bone were found to 

be respectively positive and negatively correlated to age and the overall accuracy 

rate was ± 10 years from known age which is slightly higher than previous studies. 

This research demonstrated higher accuracy provided by sex-specific equations. 

The author encountered variability in intact and fragmentary osteon frequencies with 

respect to sex depending on the age cohorts. Haversian canal number and area 

also showed sexual differences varying with age ranges in a study carried out by 

Thompson (1980). Moreover, another study found different levels of accuracy rates 

depending on sex with more reliable estimates produced by male histological 

features  (Samson and Branigan, 1987). Despite Ericksen´s results (1991) are 

encouraging for further research and it provides the possibility of aging individuals of 

unknown origin, sex differences between different ethnic groups were not 

contemplated and bone remodeling rates differences due to inter-population 

variability are likely to alter the results (Cho et al., 2006). Additionally, if the sample 

age distribution is skewed towards old age with little representation of individuals 

under 50 years old, this will have an impact on histomorphometric parameters 

(Oursler et al., 2008). The study carried out by Mulhern and Van Gerven  (1997) 

explored  sex as well as age variation in femoral histological features on an 

archaeological Nubian population (N = 43). Macroscopic assessment was 

performed to create the individuals´ biological profile; eight sites along the femur 

midshaft cross-section (periosteal and endosteal) were sampled and 10 variables 

proposed by previous age estimation histological studies assessed. Regarding sex 

differences, some variations were observed in the number of intact osteons (higher 

in males than in females) and number of fragmentary osteons (reverse to the 

intacts). Females showed more resorption cavities and bigger osteons which 

produced a decrease in the number of intact osteons. These findings are in 

agreement with other studies on the same ethnic population (Martin, 1983). 

According to the authors, the sexual dimorphism reported on histological features 

could be explained by cultural factors related to sexual division of labour, and also 

may imply different biological responses to stress by males and females (Ruff et al., 

1984). Caution must be taken when dealing with archaeological human remains with 

no documented demographic data as the macroscopic assessment might lead to 

certain bias when conducting individuals’ biological profile. 

The tibia has been used for developing age estimation formulae with results 

comparable to those obtained from the femur alone. As well as Kerley did in 1965, 
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Ortner (1975) explored age changes in the outer cortex of around 101 tibiae ranging 

from 18 to 88 years old finding the highest correlation with age for complete osteons 

frequencies; yet, secondary osteon counts were computed as percentages and no 

change in relation with age was observed. Uytterschaut (1985) used also osteonal 

bone percentage by applying Ahlqvist and Damsten´s femoral method (1969) on 

tibiae (and femora) from a Dutch cadaveric sample (N = 20) obtaining accurate 

results. Furthermore, their formula on the tibia had one of the highest correlations 

achieved by histological aging techniques (R = 0.95) although this outcome could be 

due to small sample size. Thompson and Galvin (1983) removed tibial bone cores 

from an autopsy sample of 53 individuals from European and African American 

ancestry. The authors applied cortical thickness, bone density, frequency numbers 

and metrics from secondary osteons and Haversian canals. A slightly higher error in 

the estimates than the previous study was reported – maximum of 10 years from 

known to estimated age for all individuals. Differences between specific parameters 

were found depending on the age cohort (under and over 35 years old) suggesting 

that two regression formulae should be used if age group can be determined. No 

sex or inter-population differences were examined although representation of each 

group was certainly uneven, and thus, this analysis would have been misleading. A 

pilot study was performed on a small tibia sample in order to explore spatial 

variation within cross-section over four anatomical sampling sites (Blatch, 2012). 

The result demonstrated that the higher OPD and remodeled bone values were 

observed on the anterior area and on the mid-cortical location for the four quadrants. 

As occurs with the femur, tibia cross-sections present a problem due to the amount 

of cortical bone needed to be read. Other studies performed on lower limbs  agreed 

on the fact that remodeling variability may have an effect on age prediction 

equations and caution must be taken when selecting sampling area (Pfeiffer et al. 

1995). 

Upper limbs have also produced accurate age estimates. Yoshino et al. (1994) 

sampled cores from proximal diaphysis of the humerus obtaining a SEE of 6 years 

when eight variables were included in the aging equation. Even if accuracy was 

high, the assessment of such a high number of variables may introduce error for 

anthropologist without experience in microscopy. A bigger sample and the inclusion 

of female individuals are required to corroborate their results. Histology on the 

humerus was used in addition with other anthropological techniques to create the 

biological profile of a South African Neanderthal specimen (Pfeiffer and Zehr, 1996) 
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demonstrating so the further applicability of aging histological methods on paleo-

anthropological research.  

All long bones were included in a recent study conducted by Nor et al. (2014) 

on 50 Malaysian males. The authors incorporated both histological and 

morphological parameters and the lowest deviation from estimates and known age 

was provided by a formula that included both analytical approaches and it is 

applicable to both upper and lower limbs. Reliability of the variables was examined 

on three observers with different anthropological backgrounds and osteon counting 

was the only parameter that showed slight discrepancies. Although the formula 

produced error within the range of other histological studies results, the inclusion of 

females is required for further verification of the results. 

 In a study performed by Thomas and co-workers (2000), femoral histological 

analysis on bone porosity plus macroscopic measurements were included with the 

highest correlation with age produced when these variables were combined with 

sex, height and weight parameters. The combination of histological and 

macroscopic parameters has shown to increase the accuracy of aging methods 

somewhere else (Stout et al., 1994). 



www.manaraa.com

 

 

62 

Table 3.1 Summary of selected histological aging studies on long bones and mandible. 

Author/year 
Population / Age Range (mean)/N/ 

sex distribution (M,F) 
Bone/s Variables/sampling 

Nº of fields and field 
location 

R (minimum 
and 

maximum) 

SEE (years, 
minimum and 

maximum) 

Kerley (1965) 
Caucasoid and Black/ 
0-95(41)/126/88,29,9 

Femur, tibia 
and fibula 

Intacts and fragments, % 
lamellar bone and non- 

Haversian canals on four 
fractions 

Four fields on 
anterior, posterior, 
medial and lateral 

outer cortex 

0.92/0.92/0.97 5.27 - 13.85 

Ahlqvist and 
Damsten 

(1969) 
?/? (55)/20/? femur 

% of intact and 
fragmentary osteons, and 
% of lamellar bone and 
non-Haversian canals 

adjacent to 
periosteum (4 fields) 

0.96 6.71 

Samson  and 
Branigan 

(1987) 
Caucasian/16-91(?)/58/31,27 femur 

Haversian canal number 
and diameter 

Not specified (2 
fields) 

n/a 6(M) - 16(F) 

Singh and 
Gunberg 
(1970) 

?/39-8(62)7/59/59,0 
femur, tibia 

and 
mandible 

Intact osteons, number of 
lamellae per osteon, 

Haversian canal diameter 

outer third of the 
cortex (2 fields) 

0.89 - 0.96 2.5  -5 

Thompson 
(1979) 

Caucasians/30-97(71)/116/64,52 
femur, tibia, 
humeri and 

ulna 

19 variables (see original 
article)/ various sampling 

locations 

adjacent to 
periosteum (4 fields) 

0.42 - 0.74 6.21 - 9.5 

Ericksen 
(1991) 

Mixed ethnicity/14-97(62.7)/ 
328/174,154 

femur 

 Osteons intact and 
fragments, Type II osteons, 
resorption spaces and non 

Haversian canals 

adjacent to 
periosteum (5 fields) 

0.48 - 0.72 9.96 - 12.21 

Han et al. 
(2009) 

Koreans/ 35-94(68)/72/44,28 femur 
OPD, Haversian canal, 

cortical width, osteon area 
average 

anterior midshaft (5 
fields) 

0.29 - 0.78 6.6 - 13.68 

Yoshino et al. 
(1994) 

Japanese/23-80(47)/40/? humerus 
10 variables (see original 

article) 
proximal (5 fields) 0.78 - 0.90 6.1 - 8.8 

SEE= standard error of the estimate; M=male, F=female 
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3.3.2. Ribs and short bones. 

Ribs were selected by many researchers as a suitable bone for histological 

analysis in view of the following assumptions (Table 3.2). Although costal elements 

undergo constant stress due to breathing; physiological stress on respiration is 

common to all humans indicating that variation in remodeling rates among 

individuals might be minimal. Moreover,  costal elements are not subjected to high 

biomechanical loading like it occurs with weight bearing bones as the femur  

(Crowder and Rosella, 2007). Many clinical studies were carried out during the 50´s 

and 60´s using ribs because they have an ideal location within the human body that 

was suitable for bone biopsies in living individuals (Crowder et al., 2012). 

Consequently, extensive  clinical research on rib normal physiology and pathological 

conditions was done on early and recent studies (Sedlin et al., 1963; Epker and 

Frost, 1965; Wu et al., 1970; Keshawarz and Recker, 1984). Other advantages of 

thoracic bones are their easy extraction in autopsy procedures, the non-inclusion of 

ribs in the standard osteological analysis – e.g. metrics, and the feasibility of 

assessing the entire cross-section owing the relatively small amount of rib cortical 

area in comparison to upper and lower extremities (Streeter, 2012). For valuable 

archaeological specimens for which destructive procedures must be avoided, 

sampling a rib cross-section is more feasible than sampling a long bone. One more 

advantage is the possibility of recovery due to the number of ribs found in the 

human skeleton. One specific limitation of the costal elements is that due to their 

fragmented nature complications arise from the identification of sampling area 

and/or rib number, matters that have been tested by some studies as it will be 

discussed shortly. 

Wu et al. (1970) performed a study on Haversian bone formation rates on the 

6th rib. Such rates can be calculated based on annual bone formation. This rate is 

defined as the histologically observed osteon frequency on a given sample and the 

previous existing osteons not visible at the time of death -computation of missing 

osteons removed by remodeling activity averaged by the number of years that the 

osteons took to form. Considering rib cortical transverse drifts during bone compacta 

formation, the effective birth of rib adult cortex is estimated to be 12.5 years which 

may differ depending on the given sampling site. A comparison among healthy 

specimens with those suffering from diabetes, osteoporosis or osteogenesis 
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imperfecta, as well as with animal bones, demonstrated how pathological conditions 

produce lower bone formation rates than in healthy individuals.  

One of the first aging histomorphometry studies using the 6th rib midshaft was 

the research performed by Stout (1986) who estimated age-at-death from human 

remains believed to belong to the Spanish conqueror Francisco Pizarro. The author 

applied common histomorphometric variables used for aging and additional age 

related indicators like total osteons creation (estimation of bone remodelling activity 

– osteons created – through the individual´s life spam), calculation of rib effective 

age of adult compacta (computed by subtracting 12.5 years from estimated age) 

and annual creation frequencies (rate of total osteons and Haversian bone 

creations) (Wu et al., 1970). The histological analysis provided an approximate age 

of 64 years old (60-69 age range) which is in accordance with the macroscopic 

observation and records of the deceased. Unfortunately, not much information about 

demographics, accuracy or even the applied regression formula is provided by the 

author making comparison with the upcoming studies on the field impossible. 

Stout and Paine (1992) assessed histological variables on a sample of 40 ribs 

and clavicles from a mixed ethnicity American sample with documented sex, age, 

race and cause of death. The authors generated single and combined bone 

formulae. Four variables were taken into consideration and the microscopic field 

examined included the entire bone surface. The results showed standard errors 

between known and estimated age of -2.7 to +9 years for the rib, and -8.1 to +20.6 

for the clavicle, with the combined formula producing errors of -2.5 to + 14.5 years. 

The entire sample except for one individual fell within 95% of confidence interval. 

The validation test resulted in highly accurate age estimates. No sex differences 

were reported although the sample was biased towards male individuals. In 1996, 

Stout and colleagues (1996) tested the clavicle formula developed by Stout and 

Paine (1992) on 19th century Swiss individuals to verify whether a different 

population sample would provide estimates falling within the error rates reported by 

the original method. The results confirmed a decrease in the accuracy for individuals 

over 40 years old arguing age distribution differences between reference and target 

samples as the cause of the high error rates. A new formula combining both 

samples was provided and recommended for estimating age. Clavicle has been 

used by other authors to generate population specific standards. OPD, osteon area 

and relative cortical area parameters were applied on Korean cadavers with the two 
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first variables being selected as the best indicators to estimate age through stepwise 

linear regression (Lee et al., 2014). Age estimate errors were similar to those 

reported by Stout and Paine (1992). Other authors further confirmed clavicles as 

good skeletal elements for histological age at death (Sobol et al., 2015). 

Stout et al. (1994) used multiple criteria by the incorporation of age 

metamorphosis of rib sternal end and histological assessment of bone 

microstructures (Isçan et al., 1984a; 1984b). Two estimation formulae were 

generated using the original Isçan´s sample: one only uses histology and the 

second applies both analytical methods. The multivariate equation provided more 

accurate results (SEE = 7.18) than any of the other methods by themselves 

suggesting than a multiple approach may decrease the error as shown somewhere 

else (Stout and Gehlert, 1980; Dudar et al., 1993). The combination of micro and 

macro approaches reflects different age factors, and so, they complement each 

other for the final estimate. Dudar and colleagues (1993) showed a clear 

improvement when estimates obtained through gross-examination and histological 

analysis are averaged avoiding the over and under-estimation produced by the two 

separate approaches. 

Cho et al. (2002) generated population specific formulae from a sample of 154 

known African-American and European-American individuals based on three 

variables (OPD, relative cortical area and mean osteonal area). They concluded that 

group ancestry accounts for differences on the assessed variables, and 

consequently, separated equations were generated to improve accuracy levels. The 

performance of the parameters found in this study supports clinical research 

concerning differences between white and black populations (e.g. Schnitzler 1993). 

A study conducted by Cho and colleagues years later deemed to examine whether 

differences among the mentioned variables and additional histomorphometric 

parameters exist, and a deeper understanding of remodeling rates variability 

between sex and ethnic groups was provided (Cho et al., 2006). The results showed 

interesting variation between both sexes within and between populations, which will 

be discussed later in this chapter.  

Pfeiffer and co-workers (2016) selected 216 mid-thoracic ribs from a South 

African sample made up by genetically-diverse individuals and different 

representation of socio-economic backgrounds. The variables assessed by Cho et 

al. (2002) were assessed and their aging equations validated on the South African 
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sample. The outcome shows promising results in terms of bias and accuracy with 

the best performance given by Cho et al.´s unknown-ethnicity formula (2002), with 

the other two aging equation showing a tendency of under and over-estimation of 

individuals. Population-specific formula developed from the South African sample 

did not provide higher accuracy rates, suggesting that for the Kirsten Collection no 

population specific formula is required.  

In contrast with this study, authors developed population specific standards for 

different populations in order to overcome intrinsic factors influencing bone 

remodeling rates between populations. Kim et al (2007) used 64 fourth ribs from 

forensic cases to develop a method to estimate age on Koreans. The authors shifted 

the sampling area to the sternal end and used as a categorical variable 

known/unknown sex. Seven variables were tested for generating the most accurate 

prediction formulae. The results show that histomorphological variables like osteon 

area and relative cortical area differ significantly between males and females. From 

all variables, only relative cortical area showed no statistical significance with age for 

the entire sample, and the strongest correlation was found for OPD and osteon area 

for both separated and combined sexes formulae. The equations were applied to a 

validation set of 19 cadavers with 84% of the individual following within ± 5 years for 

real age, although accuracy rates decreased for over 60 years old individuals ( > ± 5 

years). This trend was also present for males and females separately (both sex 

known and sex unknown variable) and reported somewhere else (Martrille et al., 

2009). Furthermore, it was confirmed that not only old ages have an impact on 

accuracy rates but also the inclusion of sex in the equation produce more accurate 

estimates. Similarly, separate sex equations were developed from a Polish 

cadaveric sample using osteon density as a single variable reporting similar 

correlations between sexes and the variable under consideration (Bednarek et al., 

2009); unfortunately, the authors did not provide any standard errors of the estimate. 

These results are not consistent with Kerley (1965) or Stout et al. (1994) – among 

others – who did not report any sex differences and consequently mixed sexes 

formulae were generated. Furthermore, the application of other existing equations 

developed from American populations (Stout and Paine, 1992; Cho et al., 2002) 

onto the Korean sample resulted in error rates greater than the reported by the 

original papers bringing into attention the need of Korean population-specific 

standards. This pattern has been noted in other validation studies in which existing 

equations were applied on population not closely related to the reference sample 
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showing a decrease in accuracy levels in the age estimates (Dudar et al., 1993; 

Pavón et al., 2010).  

Not only inter-population variation might increase error estimates, but also rib 

OPD asymptote suppose a limitation for age estimation in advanced age individuals. 

This issue was investigated by Goliath et al. (2016) through the assessment of 

osteon densities, and osteons shape and size on a sample of 27 femora and ribs. 

None of the variables were correlated to sex except for osteon circularity, while all of 

them were correlated to age. The increasing rate of osteon circularity with age might 

be a mechanism to stop the higher frequency of microcracks propagation common 

in older individuals (Britz et al. 2009). The results are promising with an error from 

known age of around ± 6 years using just one parameter. The authors confirmed the 

use osteon circularity for individuals over 50 years old even though a bigger sample 

is needed to confirm these results. 

For the purpose of age estimation, some studies were conducted to explore 

methodological issues such as sampling area, rib number selection, diagenetic 

processes or application of the technique on fragile archaeological assemblages. 

Cannet and co-workers carried out different methodological approaches on 

fourth ribs sternal segments from a sample of 80 individuals (Cannet et al., 2011). 

Ribs were stained and the assessment carried out through ten microphotographs 

taken from external and internal cortical areas, respectively, to investigate whether 

parameters distribution variability exist. Most of the variables did not show statistical 

differences between the two sides of the cortex, and OPD on the internal rib portion 

was found to be the best age indicator using discriminant function analysis. The 

internal rib region was also found to be larger and with more homogeneous osteon 

orientation than the external side most likely due to biomechanical variation resulting 

from muscle attachment. In summary, the highest classification accuracy was 

produced by OPD for the youngest age range (30-39 years old) which is in 

agreement with previous cited studies reporting also more accurate estimates for 

the young cohorts (Kim et al., 2007). Repeatability of the method was corroborated 

although osteon number and Haversian canal density were statistical significant 

between two of the observers. Further inclusion of more females (N = 18) in the 

sample will validate these results.  
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Sampling variation was explored by Crowder and Rosella (2007) to test 

whether OPD variability is remarkably different between cross-sections from the 

same individual, and between 3th to 8th ribs in relation to the commonly used 6th rib. 

OPD variation within the same individual was found to be fairly similar although bias 

and lower values than those obtained from the standard costal element were 

reported; interestingly, the highest deviation was produced by the 8th rib. Regarding 

inter-individual variation (OPD for equivalent rib numbers different from the sixth 

among specimens), no error would be expected in estimating age using costal 

elements from the 3th to the 7th with the last two ribs being the most accurate. The 

authors suggest that the main cause of the error produced by 8th ribs might be 

related to muscle attachment resulting in different biomechanical remodelling. In 

summary, intra-individual variation produced higher bias from the 6th rib OPD than 

inter-individual variation indicating that deeper examination of intra-remodeling 

variability needs to be undertaken.  

The taphonomic condition of the remains also affects age estimation 

techniques. Absolonova et al. (2013) conducted an experimental study to test the 

feasibility of observation of age related changes in burnt ribs. Bone microstructure 

changes due to fire induced destruction as well as differences between sexes were 

tested on 28 variables. Most of the parameters were unobservable after certain level 

of heat with intact osteons and Haversian canals being the features less affected. 

Moreover, sex differences related to advancing age were found only on specific 

parameters on the unburnt sample. Even if the number of females was scarce, 

these finding support other research outcomes (Ericksen, 1991; Kim et al., 2007). It 

is concluded that heat alteration on bone microstructures can lead to distorted 

interpretation of the histological parameters as fire modification replicate age-related 

changes. A recent taphonomic experimental study demonstrated significant 

microstructural changes both within the same individual and within the same skeletal 

element; it is suggested that bone tissue organization and composition, along with 

material clothes covering the remains, might play an important role in the expression 

of diagenetic modifications (Kontopoulos et al., 2016). 

A Mayan rib archaeological sample was tested by Suzuki et al. (2009) to 

compare the macroscopic analysis with the histological approach. Two histological 

existing equations were used for aging the sample (Stout and Paine, 1992; Pavón 

2007) with more accurate age estimates being produced by the Mayan method. The 
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histological approach showed a systematic overestimation of the juveniles and 

underestimation of the elderly, but when compared to the macroscopic techniques 

close estimates were obtained suggesting that both analytical approaches might be 

adequate. A rib modern sample of the same ethnicity was used for the generation of 

population-specific formulae  producing a regression equation with a standard error 

of ± 6 years from known age (Pavón et al., 2010). Rib bone formation rates on 

ancient population sample were further examined by Stout and Teitelbaum (1976). 

Agreement between macroscopic and histological analysis was also corroborated in 

this study leading to the conclusion that bone physiology dynamics seem to prevail 

from Homo Sapiens to modern human specimens. Although microstructures were 

fairly observable, previous pathological conditions identified on these samples did 

not match with the histological analysis mostly because focal nonspecific infectious 

processes were probably not reflected on the thoracic cage. The potential of 

histology on paleoanthropological studies is confirmed in this study. However, 

considerations about the extrapolation of bone physiological mechanisms from 

extant to modern humans need further attention as bone structure variation related 

to differences in gracility patterns have been shown between prehistoric modern 

hominid species  (Ryan and Shaw, 2015).  
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Table 3.2 Summary table of age histomorphometry methods developed using ribs. 

Author/year 
Population/ Age Range 

(mean)/N/ sex distribution 
(M,F) 

Variables/sampling 
Nº of fields and field 

location 

R²  
(minimum to 
maximum) 

SEE (years 
minimum to 
maximum)  

or accuracy level 

Comments 

Stout (1986) ?/?/? see original article 6th rib, Midshaft? n/a n/a 
Data used from Wu 

et al. (1970) and 
Frost (1969) 

Stout and 
Paine (1992) 

Mixed American/13-62 
(28.6)/40/32,7 

OPD 6th rib, midhsaft 0.69-0.77 3.9 Rib and clavicle 

Stout et al. 
(1994) 

White/11-88 (39,2)/59/? OPD 4th rib, sternal end 0.69-0.86 7.2-10.4 
Histology and 

sternal end 

Cho et al. 
(2002) 

European and African 
Americans/17-95 (50)/154/? 

OPD, Osteonal Mean area, 
Relative Cortical Area, 

6th rib, midhsaft 0.36-0.59 12.22 (RMSE) 
Population specific 
and non-specific 

formulae provided 

Kim et al. 
(2007) 

Koreans/20-77(?) /64 /36,28 
OPD, cortical area, relative 

cortical Area, average 
osteon and canal areas 

4th rib, sternal end 0.82-0.83 4.8-4.9 
Known and 

unknown sex 
formulae 

Bednarek et 
al. (2009) 

Polish/ 17-88(50)/ 54 /39,35 OPD left 4th, midshaft 0.57-0.62 n/a 
Sex separated 

equations 

Pavón et al. 
(2010) 

Mayan/20-87(43)/36 /34,2 
OPD, cortical area, osteon 

size 
4th rib, midshaft ? 6.2-12.8 

Population-specific 
formula required 

Absolonova 
et al. (2013) 

Central Europe/19-95/162 
(106,56) 

see original article 
3rd  to 10th  rib, sternal 
segment (1 to 4 fields) 

0.33-0.70 11.9-15.7 
Burnt and unburnt 

remains 

Goliath et al. 
(2016) 

European ancestry/39-82 
(62)/27 (11,16) 

OPD, osteon area, osteon 
circularity 

standard rib, midshaft 0.65 6.05 Old individuals 

Pfeiffer et al. 
(2016) 

South African/17-
82(48)/213/138,75 

OPD, mean osteonal area, 
Relative cortical area 

Mid thoracic rib, 
midshaft 

0.28-0.35 n/a 
No population 

specific-formula 
required 

SEE= standard error of the estimate, RMSE: root mean squared error, M= male, F= female.  
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3.4. Factor affecting histological age estimation techniques 

Histological age estimation methods rely on bone remodelling rates; the 

evidence of remodelling activity might be altered by intrinsic and extrinsic factors, 

and consequently, bias in the age estimates. The most relevant factors will be 

discussed in this section (Table 3.3). 

Table 3.3 Summary table of some factors affecting bone remodelling rates (Adapted 

from Stout (1998)). 

Chronological 
Age 

Genetics Biomechanics Drugs Disease Others… 

Adult compacta 
birth 

Population 
variation 

Spatial 
variation 

Alcohol 
Diabetes 
mellitus 

Regional 
Trauma 

Asymptote 
  

Estrogen 
Osteomalacia 

(rickets) 
Local 

infections 

Age related 
pathologies 

(e.g. senile or 
postmenopausal 

osteoporosis) 

  
Corticosteroids 

Osteogenesis 
imperfecta 

Nutrition 
 

Physical 

activity 

   
Anticonvulsant 

Paget´s 
Disease 

Hormones 

3.4.1. Inter-population Variation 

Inter-population variation in remodelling rates is a result of genetics as well as 

environmental and cultural factors. Two important considerations related to age 

histological techniques and population specific standards are noted: since 

remodelling dynamics seem to differ between and within populations, higher errors 

have emerged from applying existing formula onto an unrelated sample with many 

researchers accessing to a variety of ethnic origin groups either to test the original 

method or to develop population-specific formulae.  

 Ubelaker (1977) used Kerley´s method (1965) on a modern sample from 

Dominican origin finding higher errors in the estimates than those reported by the 

original method. Pavón et al. (2010) tested Stout and Paine (1992) and Cho et al. 

(2002) formulae on ribs from a Mayan population. The first aging method provided 

reasonable age estimates for the main sample but produced errors around ± 11 

years for the control sample, whilst the second methodology overestimated most of 

the individuals from both main and control samples again producing higher errors for 

the latter group. The authors suggest that net formation rate may differ between the 
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three samples due to higher OPD values in comparison to the reference samples.  

Further investigation is required due to sample size and sex skewness, although the 

two only females included in the sample fell within the variability produced by their 

male counterparts. The better performance of Stout and Paine (1992) could be 

attributed to the European-American origin shared by the two samples. Early studies 

have shown discrepancies in error rates for different ethnic groups (Thompson and 

Gunness-Hey, 1981); some recent studies, however, proved same accuracy rates 

for population-specific and existing formulae (Pfeiffer et al., 2016).  

Broadly speaking, bone modelling and remodelling are determined not only 

genetically but also environmentally. Genetic factors determine bone microstructure 

in around 33-81% through the regulation of bone cellular machinery, and 

environmental factors seem to account for 19-61% of population variation; the 

added influence of specific individual´s life style on bone microarchitecture might 

also alter population variation and possibly modify heritability patterns within the 

population sample (Bjørnerem et al., 2015). A study on baboons shown that genetic 

variation accounts 48-75% of the phenotypic variance in intracortical microstructure 

variation at  normal population-level (Havill et al., 2013). Regarding bone mineral 

content, depending on the ethnic group, genetic factors are estimated to account for 

70–80% of the mineral composition during the early years of life responsible for 

bone development and posterior bone quality during adulthood (Anderson and 

Pollitzer, 1994). 

In particular,  bone turnover seems to be lower in trabecular and cortical bone 

for African Americans than white Americans having an impact on bone fragility 

associated with age (Schnitzler, 1993). Moreover, bone density and bone mass are 

higher in blacks compare to whites, and usually higher in males than in females 

(Broman et al., 1958). It was noted that cellular mechanisms responsible for bone 

formation differ between blacks and whites with cells producing a greater amount of 

growth factors associated with bone formation in blacks during developmental 

stages, and thus, incrementing general bone mass in this ethnic group (Bell, 1988). 

Nonetheless, different black-white bone dynamic patterns throughout the life spam 

could suggest a more complex phenomenon in regard to inter-population variation 

bone rates. According to the cited literature, African Americans have less risk of 

suffering from osteopenia in old ages as a result of the mentioned higher bone mass 

and denser cortical bone due to more subperiosteal deposition and lower endosteal 
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resorption (Garn, 1981; Anderson and Pollitzer, 1994; Baron et al., 1994), although 

some studies did not corroborate this. For example, Cho and colleagues (2006) 

reported that among all the groups, African American females were the only group 

showing significant expansion of the medullary cavity with age. In this study, most of 

the variables presented differences between ancestry and sexes. Yet, the relation 

between these groups and bone dynamics seems to be more complicated than just 

one group having higher bone remodeling rates than the other. The greatest 

differences were found between European American males and the remaining 

groups, especially this ancestry/sex group exhibited the higher bone turnover in 

young ages in comparison to African American females. Interestingly, European 

American males total and relative cortical area did not change with age –indicating 

that they maintain bone mass.  

Another research examined osteon and Haversian canal area variability from 

ribs and femora obtained from 18th to 20th centuries English, Canadian and South 

African collections (Pfeiffer, 1998). A general trend of larger osteon size in femora 

than in ribs was found. Histomorphometric parameters differences were observed 

between the earliest English sample and the modern groups on both skeletal 

elements. Owing the genetic heterogeneity of the South African sample, it is 

suggested that environmental factors rather than direct genetic differences might be 

the cause of the observed variance encountering the non-genetic relatedness of the 

Canadian and the Cape Town groups (Pfeiffer, 1998). When different femur and rib 

formulae -mostly developed from American populations- were tested on a large 

number of individuals on the same English sample, only some histological methods 

demonstrated fair agreement between known and estimated age  (Crowder, 2005); 

limitations related to biological variability as well as different statistical approaches 

or methodological issues were attributed as possible factors affecting accuracy 

rates. 

Other ethnic groups, such as Chinese and Japanese population samples, 

have been revealed to differ demonstrating less cortical bone than American whites; 

Central American groups showed longer growth development periods than the other 

populations (Pollitzer and Anderson 1989). Assuming that growth rates are different 

between ancestries and maturation rates vary between populations, the mean age 

tissue will be higher or lower depending on the ethnic group and  an impact on 

histological age assessment can be expected.  
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Cortical rib remodelling in three different archaeological populations and a 

modern sample demonstrated that although sex differences were not observed, a 

variation in bone remodelling parameters between the four sub-samples existed –

with increasing rates over time (Stout and Lueck, 1995). The authors suggest 

different subsistence and cultural backgrounds as the cause. However, osteon 

creations differences in these samples could be a result of variation in skeletal 

growth cessation, and consequently, differences in effective age of adult compacta 

would be observed. In summary, although evidences of variability in life cycle spams 

between the different species of Homo were shown, whether age estimation is 

directly affected by bone remodelling secular changes need further consideration. 

Archaeological samples from Native America displayed different remodelling 

rates with a higher bone turnover for Eskimos in comparison with Pueblo and 

Arikara samples indicating different dietary habits as a possible caused for this 

variability (Richman et al., 1979). Furthermore, when Eskimos from the 19th century 

were compared to modern White Americans, a higher OPD was reported 

(Thompson and Gunness-Hey, 1981). Bone mineral content variation between 

modern Eskimos and White Americans was observed with an earlier and higher age 

associated mineral loss for the Eskimo population sample becoming highly 

osteoporotic with advancing age –a fact observed also in Eskimos in the Artic area 

(Harper et al., 1984).  

3.4.2. Sex related variation 

Males and females present differences in body size due to sexual dimorphism 

(e.g. Kranioti and Michalodimitrakis, 2009). Age associated sex differences in 

endosteal and periosteal measurements are due to a higher periosteal bone 

apposition in males that balances the bone loss that occurs at the endocortical, 

trabecular and intracortical level with advancing age. This mechanism is not 

observed in females provoking an increase in bone stress levels and a decrease in 

bone strength ,and thus, stressing differences between sexes (Seeman, 2001). 

Ericksen (1979) reported a higher rate in femoral medullary cavity measurements for 

females than males throughout all age cohorts, as well as unequal remodelling 

observed through different femoral sampling sites  probably in response to different 

topographical biomechanical stresses and metabolic demands. Examination of 

sexual dimorphism among ethnic groups demonstrated that while white males 

seemed to have larger medullary cavities than their black counterparts, black and 
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white American females showed different bone loss rates depending on the life 

decade. An overall higher expansion of the femoral cavity in the African American 

female group after the fifth decade was observed contrasting findings reported by 

other authors on the metacarpals (Garn and Shaw, 1977). These discrepancies 

could be attributed to different remodeling rates between different skeletal elements. 

For example, sexual and ethnical differences are larger in non-weight bearing bones 

than in bones subjected to weight strains probably because physical activity on 

highly active skeletal elements alters in the same fashion the bones, this being the 

result of the observed sexual differences (Pollitzer and Anderson, 1989). Therefore, 

caution must be taken when considering remodelling rates in different parts of the 

skeleton based on site specific effects.  

Cho et al. (2006) agreed with Ericksen  results (1979).  Different values for 

OPD, osteon area and relative cortical area with age were found among all groups 

(separated by sex and African-Americans and European-Americans ancestries). 

Regarding sex differences, European males and African females were the sub-

samples that differed the most, with this last group having the lowest OPD and 

therefore the highest bone density quality. Sexual dimorphism in rib size was 

confirmed by larger subperiosteal area for younger males from both ancestries. 

African-American females had larger relative cortical area to endosteal area in 

younger ages, being the cause of better bone quality in older ages when endosteal 

area is systematically reduced for all sexes. Conversely, African females at older 

postmenopausal ages had significantly higher endosteal expansion than any of the 

other groups. This seems to be balanced by lower intracortical porosity and larger 

relative cortical areas accounted in early years of life. The authors account ancestral 

biological differences due to genetic and environmental factors (e.g. lifestyle) as an 

explanation, although unequal sexes and ancestries distribution among the four sub-

samples might have had an impact on the results.  

Some factors would affect sex as well as ethnic groups. For example, femoral 

bone mineral density analysis was determinant of greater bone strength and bone 

density for black ethnic groups than for white samples. Nelson et al. (1991) studied 

the differences in bone density and the risk of osteoporosis on each group using 

principal component analysis. Differences in body size accounts for 50% of the 

variance in bone density for the two ethnic subsamples, and the results 

demonstrated that Black women have higher bone density levels than whites do, 
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and therefore they might have a lower risk of developing osteoporosis. These 

findings might be explained by biomechanical usage, hormonal activity or cultural 

and genetic differences between the groups. A higher muscle mass –observed in 

Black women- increments bone mass, and it is partly responsible of the greater 

bone mass in this group (Cohn et al., 1977). An interesting research was carried out 

to investigate the differences in cross-sectional geometry between U.S black and 

whites, and South African whites and blacks (Nelson et al., 2004). Bone strength in 

postmenopausal Black females from U.S. and from South Africa was higher than the 

two white samples for the same age cohorts and cross-sectional geometry 

comparison resulted in smaller endosteal cavities and higher cortical thickness in 

the femoral neck for blacks. The same ethnic groups in the two countries present 

less differences than different ethnic groups within the same country probably due to 

genetics influences being more determinant than environmental factors. Moreover, 

both black sub-samples showed greater differences between them than the two 

white subsamples which could be explained by migration history and admixture of 

the black population.   

Histologically, both Haversian canal distance from the cement line and cement 

line diameter are measurements that reflect past bone formation activities, and their 

correlation in healthy human ribs indicates bone quality maintenance (Parfitt, 1979). 

Osteoporotic samples reflect bone formation rates diminishing in relation to the rate 

of bone resorption creating imbalance between both cellular activities (formation and 

resorption of each BSU creates a larger cavity than the BSU that is newly formed). 

Females over 40 and men over 50 years old are supposed to have a higher risk of 

osteoporosis due to this imbalance in remodelling rates on endosteal, Haversian 

surface and periosteal locations. For women in the premenopausal period, bone 

loss rate is about 0.76% per year compared to the postmenopausal group that have 

an annual rate of 1.39% due to estrogen deficiency and associated bone turnover 

imbalance. Recker et al. (2004) indicates that the rate at which bone remodeling 

occurs in females over 40-50 is not stable with a considerable increase in the first 

decade after menopause implying an increment in bone fragility.  

Having all these facts into account, sex differences have been encountered 

and studied for anthropological examination of human remains concerning 

histological age estimation. Although clinical data is ambiguous, there is still an 

ongoing debate about how sex differences in bone remodeling affects males and 
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females in histological methods with some studies demonstrating clear differences 

and some not reporting any. In summary, the question still remains as how age 

estimation techniques accuracy rates may be decreased in groups of pooled sexes. 

Factors as menopausal effects (as shown earlier), sex differences in 

histomorphometric parameters (Tanner, 1978; Thompson, 1979; Burr et al.,  1990; 

Ericksen, 1991; Mulhern and Van Gerven, 1997) and/or sex related variation related 

to maturation rates between males and females (Tanner, 1978) might be the key 

answer. 

3.4.3. Other factors: pathology, diet and physical activity. 

Pathological conditions have been shown to alter modelling and remodelling 

rates of endosteal, cortical and trabecular bone (Ortner, 2003; Robling and Stout, 

2008). Consequently, the microscopic features will induce bias. Paine and Brenton 

(2006) demonstrated that a South African sample affected by malnutrition produced 

low OPD levels indicating a slowdown of the bone turn-over. Some researchers 

have included pathological specimens in their samples, with the assumption that 

some pathologies are certainly difficult to discern given an unknown individual 

(Ericksen, 1991); while others discarded pathological cases considering them as 

outliers for the regression analysis (e.g. Stout et al., 1994). Whether the inclusion of 

these specimens covers a wider range of remodelling activity on a population basis 

or actually decreases accuracy rates and reliability when developing an age 

estimation method is still an open debate.  

Metabolic disturbances affect the rates of bone modelling and remodelling. 

There are specific conditions that are known to alter the histological variables 

observed in the aging methodologies. Activation frequencies are accelerated under 

osteogenesis imperfecta or hyperparathyroidism (HP) implying an increase in the 

number of BMUs created per year, and thus, producing higher OPD values and an 

overestimation of age at death (Robling and Stout, 2008). Furthermore, the 

pathognomonic of the HP known as tunnelling resorption could be differentiated and 

it might be used for diagnosis and observed histologically (McCarthy, 2010). 

Osteoporosis, that as a calcium deficiency can lead to secondary HP (Raisz, 2005), 

is commonly associated with age provoking an imbalance in bone formation and 

resorption and consequent higher bone loss.  Moreover, it is attenuated by other 

factors as menopause, mechanical loading (e.g. disuse or extreme exercise) and 

population and/or genetic influences, among others (Brickley and Ives, 2008). 
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Females and males bone loss associated with increasing age accounts for the same 

rate (around 20-30%), but the factors aforementioned make the subjects (especially 

women after a certain age) more susceptible to osteoporosis related fractures 

(Riggs et al., 1998). Histologically, osteoporosis can be seen as an increase in the 

number frequency and depth of resorption spaces with failure of complete filling of 

the new created osteons. These patterns can be also observed in other metabolic 

conditions like vitamin D deficiency -provoking  higher resorption rates to give 

calcium to the blood serum- or in osteopenia (Brickley and Ives, 2008). Moreover, 

postmenopausal women with osteoporosis are prompted to seasonal vitamin D 

deficiency triggering the acceleration of bone loss and an increment of poor 

mineralization (Brickley and Ives, 2008; Stein et al., 2011).  

Histological age estimates can be also altered by fractures or local infections 

resulting in an increase of remodeling rates. According to Frost (1983), the so-called 

regional acceleratory phenomenon (RAP) would affect only a specific area of the 

bone surface while other areas will show no effects. If this is the case and just a 

topographic section altered by the RAP is interpreted, the estimates will not 

represent the chronological age of the individual (Frost, 1983; Robling and Stout, 

2008). Van Der Merwe et al.  (2010) described some examples of this alterations 

and how dry bone histology aids in the diagnosis of these condition. Likewise, 

increase porosity and Haversian canal size, and smaller osteon area produced by 

an increase in osteonal remodelling rates may be used as indicators for 

osteoporosis diagnosis and possible association with higher risk fracture (Squillante 

and Williams, 1993; Havill et al., 2013). However, caution must be taken since only 

a limited number of disorders will show pathognomonic features that can be 

observed on dry bone (De Boer and Van der Merwe, 2016). 

Environmental factors such as physical activity may affect also bone modelling 

and remodelling, and the expression of histological features. The theoretical 

framework is called mechanotransduction consisting on the conversion of 

mechanical loading into a reaction of the bone cells that will lead to bone 

remodelling (Turner and Pavalko, 1998). Differences in bone architecture and 

cortical density were observed in lower and upper limbs depending on the 

population subsistence activity or between individuals with various activity levels 

(Stock and Pfeiffer 2001; Fritz et al. 2016). Burr and colleagues´ data (1990) 

demonstrated variation in histological features between archaic and industrial 
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populations ,as well as sexes, as a consequence of different dietary habits and 

subsistence activities. Histological changes like smaller Haversian canal size or 

greater OPD values suggest higher remodelling activation rates as a result of higher 

levels of physical activity. On the other hand, biomechanical effects of no-activity 

also affect bone external and internal architecture. A pilot study carried out by Inoue 

et al. (2000) showed how both acceleration in bone resorption and a decline in bone 

deposition causes bone loss in individuals under bed rest. Bone mineral densities 

are related not only to physical activity itself but also with type, duration, intensity 

and occurrence of physical activities with higher or lower benefits for bone quality 

depending on those factors (Morseth et al.,  2011).  

As it has been shown, physical activity have an impact on  bone histological 

structures, and although further research is needed, differences between 

populations likely to be caused by occupational related activities have been 

reported. The remaining question is how to evaluate and measure the type, intensity 

and level of activity/strain that may or may not have occurred to actually produce 

significant differences in intracortical remodeling parameters, and therefore, be able 

to identify and interpret these variations in age estimation techniques. 

3.5 Summary 

Since the first studies in 1960, histological aging methods have experienced 

advances in standardization and in methodological approaches. Most of the bones 

tested for histological analysis were proven to be suitable for estimating age 

although intra and inter individual/population variation may be considered and 

further examined in order to fully understand variability in remodelling rates within 

and between samples. Upcoming research exploring histomorphometric parameters 

on different samples will provide deeper insight on how intrinsic and extrinsic factors 

can alter bone microstructure. 

In this thesis, an in-depth histomorphometric investigation using ribs was 

performed on the two Mediterranean samples in view of exploring the factors and 

issues discussed during the course of this chapter; and to what extent, these 

considerations can have an impact on the age-at-death estimation method 

developed for the sample at hands.  



www.manaraa.com

 

80 
 

Chapter 4 : MATERIALS AND METHODS 

This chapter presents the material and methods used for the research 

undertaken in this thesis. To begin with, the skeletal material examined will be 

presented along with relevant demographic data about each sample. Next, a 

detailed description of the histological methodologies applied for the preparation of 

the rib cross-sectional slides will be provided. Last, the statistical approach used to 

assess the data collected will be presented. 

4.1. Materials 

The skeletal material consists of standard rib samples from modern skeletal 

remains collected from two Mediterranean samples. The Cretan sample (Crete, 

Greece) consists of remains acquired from the Cretan Osteological Collection 

(Crete, Greece) (Kranioti et al., 2008; Kranioti and Michalodimitrakis, 2009) and 

autopsy samples collected in the Pathology Division Department (University of 

Crete, Greece). The Cypriot sample consists of human remains collected from an 

ossuary housed in the Municipal cemetery of Limassol (Republic of Cyprus); this 

skeletal material comes from the Greek-Cypriot area of the island of Cyprus and it 

will be referred as Cypriots in this research (Kranioti et al., 2017).  Demographic 

data for the entire sample used for this study is summarised in Table 4.1. 

Table 4.1 Demographic data for Cretan and Cypriot study sample together. 

  

N Age Range Mean Age SD Skewness 

Total 
sample 

Males 40 20-89 60.1 16.52 -0.58 

Females 48 19-100 60.52 19.11 -0.24 

Total 88 19-100 60.33 17.88 -0.21 

The costal elements sampled for this study share the same selection criteria. 

Thus, ribs were collected according to the following characteristics:  

 Ribs must be in good preservational condition with no damage on the 

periosteal surface affecting the cortical bone of the rib. Slight damage of the 

periosteal surface was allowed if the cortical bone was still intact for observation of 

microscopic features. 

 No trauma or evident pathological condition may be apparent. When the 

whole skeleton was available for macroscopic examination (occasionally in the 

Cretan sample and the entire Cypriot sample), all the skeletal elements must be also 
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examined for possible pathological conditions affecting other areas of the skeleton, 

and the individual must be discarded if the pathology was considered to have an 

impact on bone microstructure. Common degenerative changes were often 

observed on the skeletons and were not considered a criterion of exclusion but a 

result of aging. 

 The third segment of the rib midshaft was the area of interest. If only a 

segment of the rib was available (see Cretan Collection sample section), the 

morphology of the rib was assessed with the specimen being discarded if the 

midshaft was not identified (Figure 4.1). 

 

 

Figure 4.1 Third middle rib segment sampled (area of interest marked by horizontal 

lines, study sample). 

 A priori the 6th left rib was selected. This criterion was accomplished by the 

examination of the entire costal element or shaft portion (if fragmented) through 

morphological characteristics of the rib. It has been demonstrated that histological 

age estimation can be reliably applied on ribs from the 3th to the 7th (both right and 

left) (Crowder and Rosella, 2007). According to this protocol, other standard ribs (4th 

-7th ribs) apart from the sixth left one were selected from the Cretan and Cypriot 

samples. 

 Age at death and sex of the individuals must be known. 

4.1.1. Sampling error pilot study:  sub-sample set  

An additional 36 rib sections were processed to test whether sampling sites 

along the length of the rib had an effect on osteon population densities observed 

through histological examination. Furthermore, the impact of sampling sites on the 

accuracy of two existing age estimation methods was investigated. Ribs from the 

Cretan Collection were collected based on the selection criteria, although for this 

study, the costal elements needed to be also complete along their length from the 
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sternal to the vertebral end with no apparent damage on the periosteal area. Due to 

the inclusion criteria, restrictions in sample size and sex selection were experienced 

and only female specimens were suitable. Six 4th ribs were selected and processed 

histologically. Age of the individuals ranged from 19 to 58 years old  with the oldest 

individual being under 60 years old to avoid asymptote effects on age estimations 

(Mean age = 36 years old, SD =14.16) (Table 4.2).  

Table 4.2 Sampling error sample demographic data (y.o.= years old). 

Rib code Age Sex 

Rib_1 19 y.o. 

Female 

Rib_2 27 y.o. 

Rib_3 29 y.o. 

Rib_4 35 y.o. 

Rib_5 46 y.o. 

Rib_6 58 y.o. 

Mean 36 y.o. 

4.1.2. The Cretan sample  

Cretan costal elements were obtained from the Cretan Collection, a Modern 

Osteological Collection housed in the Pathology Division Department which is part 

of the Ministry of Human Rights and Justice located in Heraklion (Crete, Greece). 

The skeletal material corresponds to a modern population (19th and 20th 

century) from two cemeteries, St. Konstantinos and Pateles, both municipal 

graveyards in Heraklion city. Heraklion is the largest city of Crete and it is the fourth 

largest in Greece giving the name to one of the four municipalities of the Crete 

Island.  This prefecture was created after the beginning of the 20th century when the 

island of Crete joined Greece, and it experienced a population increase of 20% from 

1980 to the beginning of 1990 (www.crete.gov.gr). The sample consists of males 

and females who were born in Crete between 1867 and 1956, and died between 

1968 and 1998. In Greece, burial practices dictate that skeletal material must be 

exhumed after approximately 3 to 5 years unless a rental fee is paid by the family of 

the deceased in order to keep the remains in the cemetery grave. Otherwise, the 

Council proceeds to exhume the remains and they are either transferred to be 

stored in designated areas of the city or cremated (Kranioti et al.,  2008; Kranioti and 

Michalodimitrakis, 2009). Dr Elena Kranioti received the permits from the District 

Attorney to perform anthropological analysis on them. Consequently, around 200 
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skeletons were collected, cleaned and stored according to standard protocols 

(Kranioti Personal communication).  

Age at death for each individual is known from census records housed in the 

City Hall in Heraklion.  Unfortunately, this information was not available for all the 

individuals. Sex was inferred by the examination of the names written on the boxes 

and was also assessed and corroborated by the macroscopic examination of the 

pelvis (Krogman and Isçan, 1986). Cause of death was obtained from the archives 

although this information is only available for a proportion of the individuals  (Kranioti 

et al., 2008). Based on the information available, a number of individuals that 

migrated from mainland Greece, other Greek islands or other neighbouring 

countries were excluded. The collection consists of around two-hundred individuals 

with an age range from 6 to 100 years old (age = 70, SD = 16.11). Due to the high 

life expectancy in Crete (Males = 77.5 years old, Females = 82.6) 

(www.healthgain.eu/casestudy/crete-greece)(www.healthgain.eu/casestudy/crete-

greece) the individuals from the Cretan Collection are inevitably skewed towards 

older ages. 

A total of 60 rib samples from the Cretan Collection (approximately 5 

centimetres of the entire rib) were received at the Archaeology Department in the 

School of History, Classics and Archaeology (SHCA, University of Edinburgh) by the 

author for performing histological analysis (see permits in Appendix A.1). Of the 60 

rib samples available for assessment only 40 of them met the selection criteria.  

Most of them are discarded due to sampling area not corresponding to the specific 

sampling site chosen for this research and for pathological conditions seen through 

gross-morphology. Hence, a total of 40 ribs from the Cretan Collection were 

eventually selected for histological analysis and processed accordingly in the 

laboratory (see Methods section). Moreover, the author had the opportunity of 

performing macroscopic examination of some of the skeletons in order to confirm 

that pathological disorders were not present on the remaining skeletal elements. In 

some instances, while no specific pathologies were found through gross 

examination of the costal elements, the individual had to be excluded due to obvious 

pathological conditions that were observed through histological observation (see 

Appendix A.1). An under 13 years old male individual was also excluded due to 

cortical drifts during development and growth affecting the histological assessment 

of age. According to Wu et al. (1970), the effective age of birth of the adult compacta 
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occurs at this stage, therefore individuals under this age had to be removed from the 

total sample.  

The final sample set comprises 34 individuals with a mean age of 60.55 (SD = 

20.23) (18 males and 16 females). The mean age for males is 55.54 years (SD = 

20.50) and females with a mean age of 60.23 years (SD = 20.50) (Table 4.3).  

The second set of Cretan specimens consists of the middle third of the 6th rib 

collected during routine autopsies. The costal elements were obtained from forensic 

cases received at the Pathology Department, University of Crete (Greece) following 

next of kin consent for the study according to the protocol that was approved by the 

Ethics Committee of the University Hospital of Heraklion in Crete. A total of 14 

individuals were first processed histologically. After the examination of the autopsy 

reports, seven of them were excluded due to pathological conditions and to avoid 

their possible impact upon the accuracy of age estimation (Paine and Brenton, 

2006a). One specimen was identified as a non-Greek individual and therefore 

excluded from the final set (see Appendix A.1). The final autopsy sample consists of 

seven specimens with an age range from 20-69 years old (Mean Age = 42.57, SD = 

20.61) with a total of five males and two females with a mean age of 37.8 (SD = 

20.80) and 54.5 (SD = 20.50), respectively.  

The total Cretan sample includes a total of 41 individuals (Males = 23 and 

Females = 18) with an age range from 19 to 98 years old (Mean age = 57.48, SD = 

21.17) (Table 4.3). The sample age distribution corresponds to 24.4% of individuals 

from the 19-39 age range, 26.8% within the 40-59 age bracket and over 48% of the 

individuals over 60 years old. Figure 4.2 represents age distribution for males and 

females divided into age cohorts for the entire Cretan sample. 
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Table 4.3 Demographic data for the total Cretan sample. 

 
 N 

Age 
Range 

Mean Age SD Skewness 

Total Cretan 
sample 

Males 23 19-89 55.54 20.50 -0.31 

Females 18 27-98 60.23 22.42 0.07 

Total 41 19-98 57.48 21.17 0.25 

  SD=standard deviation 

 
Figure 4.2 Age distribution for the entire Cretan sample by sex. 

 

4.1.3. The Cypriot sample 

The Cypriot Osteological Collection comprises approximately 200 individuals 

whose remains are housed in the Municipal Ossuary inside St. Nicholas Cemetery, 

in Limassol (Republic of Cyprus) (Kranioti et al., 2017). The individuals are part of 

the ossuary and according to the Cypriot burial custom, the remains are buried for 

five years, and after this period, exhumed and moved to the cemetery ossuary. 

Permit for access to the human remains had to be obtained from the Priest in 

charge of the Municipal Cemetery and all the documentation required was 

presented and access granted. This is a relative new osteological collection for 
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which research studies are being published (Almeida Prado et al. 2016; Cawley and 

Paine 2015; Kranioti et al. 2017; García-Donas, Ekizogu, Bozdag et al., 2017). 

The skeletal material ranges from 1 day to 100 years old consisting of 

individuals who died between 1976 and 2003 and were buried in Limassol Municipal 

cemetery. Limassol is the second largest city of Cyprus. It experienced a 

considerable population increment after the division of Cyprus in 1974 when Greek-

Cypriot refugees moved to Limassol (around forty-three thousand people). The 

development of urban areas provoked a population displacement from the 

countryside. In the 1980´s and 1990´s, further population increase resulted from 

other external factor such as the Lebanon war and the accession of Cyprus in the 

European Union (Edoc.coe.int/en, 2013).  

The author personally collected the costal elements as part of a project funded 

by the University of Edinburgh (Challenge Investment Fund, SCHA). A total of 

seventy individuals were originally collected as being suitable for this research 

based on the rib selection criteria aforementioned. Each individual is kept in a 

metallic or wooden box with the deceased´s name written on it. As occurs with the 

Cretan collection, Greek names are either female or male so no confusion with the 

individual´s sex is possible. Based on the available demographic information and the 

deceased’s surnames, individuals that were not born in Cyprus were excluded. Age 

at death was obtained from the archives. For some of the individuals, age was not 

available in situ but they were collected anyway in view of gathering this information 

through other sources (e.g. City Hall records). No clinical data are available for this 

collection but gross examination of all the individuals was carried out by the author 

in order to exclude those specimens with obvious pathological conditions.  

All the costal elements were sent to the Archaeology Department (University 

of Edinburgh) and the samples were cleaned and prepared for histological 

examination. From the 70 ribs originally collected, age at death information was not 

available for 19 individuals, and thus, they were excluded from the final sample. 

Histologically, no obvious pathological conditions were observed but three rib 

samples were discarded due to taphonomic alterations that deemed microscopic 

observation impossible (see Appendix A.2). The only sub-adult individual in the 

sample was also excluded (6 years old). Thus, the total study sample finally consists 

of 47 individuals (M = 17 and Females = 30, Figure 4.3) ranging from 20 to 100 

years old with a mean age of 62.81 (SD = 14.20) (Table 4.4).  



www.manaraa.com

 

87 
 

Table 4.4 Age and sex distribution for the Cypriot sample. 

  
N Age Range Mean Age SD Skewness 

Cypriot 
sample 

Males 17 42-84 64.11 10.9 -0.08 

Females 30 45-100 62.06 15.90 0.16 

Total 47 20-100 62.81 14.20 -0.59 

 SD=standard deviation 

 

 

Figure 4.3 Age distribution of the Cypriot sample by sex. 

4.1.4. The Mediterranean sample: Cretan and Cypriot samples 

The original sample consisted of 105 individuals that were processed 

histologically for developing the age estimation method. The final sample (both 

Cretans and Cypriots together) consisted of 88 individuals, 40 males and 48 females 

(see Table 4.1); the mean age for the total sample is 60.33 with a standard deviation 

of 17.88. See Appendix A.3 for a detailed numerical description of individuals per 

decade. 

The composition and size of the sample is inevitably determined by availability 

and criteria selection, and even though total sample sex distribution is fairly 
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balanced, age distribution for both population samples is skewed toward old ages 

(Figure 4.4 and Figure 4.5).  

 
Figure 4.4 Age distribution of Cretan and Cypriot sample together. 

 

Figure 4.5 Entire sample composition based on sex and population samples with 

mean age and standard deviation for each (sub)-group. 
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4.2. Methods 

4.2.1. Sample histological preparation 

The preparation of the rib thin-sections was carried out in the Bone Histology 

Laboratory housed at the School of Anatomy (University of Edinburgh). The required 

Health and Safety documents and guidelines have been followed according to the 

University of Edinburgh Health and Safety Department (Safety Notes for Students 

working in teaching laboratories (BMTO); Archaeology Laboratories–Safe Working 

Practices (December 2012)) (www.ed.ac.uk/schools-departments/health-safety). 

The researcher has attended the Health and Safety Seminars provided by the 

University of Edinburgh for all laboratory users (February, 2013, 2014, 2015). 

Moreover, the required Control of Substances Hazardous to Health (COSHH) 

application forms based on the University of Edinburgh Regulations (2005) were 

submitted for the chemicals used during the process of thin-section preparation. All 

the required approvals were awarded. 

Two histological techniques were used for the preparation of the thin-sections. 

The first sample set (most of the Cretan Collection sample and a small proportion of 

the Cypriot sample) was processed according to the technique described in Cho 

(2012) and Paine (2007) (named in this thesis Methodology A). A few modifications 

have been made in light of the available laboratory equipment and the option of 

using computer software for histomorphometric analysis. The second set of 

specimens (a small proportion of the Cretan Collections sample, the Cretan autopsy 

sample and most of the Cypriot sample) was prepared following a revision of 

petrographic methods for thin-section preparation (Methodology B) (García-Donas, 

Dalton, Chaplin et al., 2017). It is extremely important that all the steps described in 

this chapter will be carefully followed; the quality of the slides is crucial for the 

acquisition of the data. It is recommended for safety issues to have all the necessary 

tools and equipment ready before starting each step. Only one single section per 

specimen was assessed following standard protocols (e.g. Cho et al., 2002; Pfeiffer 

et al., 2016; Goliath et al., 2016); there is no improvement in age estimates when 

results from serial thin-sections are averaged, although it can be used to examine 

intra-individual variability (Crowder, 2005). Unless stated otherwise, Buehler 

equipment and consumables were used for the histological preparation (Buehler, 

Esslingen am Neckar, Germany).  

http://www.ed.ac.uk/schools-departments/health-safety
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4.2.1.1. Specimens preparation: Methodology A 

a. Rib preparation 

Ribs from each individual were received in properly labelled plastic bags. New 

codes and labels were attributed to each specimen as a necessary procedure for 

creating the dataset: information recorded included rib codes, collection point or 

origin, rib number, side, age, sex, rib description and additional information or 

comments.  

The ribs were complete or fragmented, and in both cases it was imperative to 

select the specific area on which the cross-section has to be cut off. Once the 

desired area was identified, a rib segment was removed taking into consideration 

that the piece of bone had to fit in the space between the bone chuck and the width 

of the tank (IsoMet 1000 Precision Saw) which generally was not more than 7 cm. 

This first segment had an approximate length of 4 cm and was extracted manually 

using a Dremel 3000 variable speed multi-tool fitted with a diamond-cutting wheel. 

Three sides of each rib –superior, anterior and posterior- were marked with 

different coloured permanent markers with the purpose of being able to identify the 

location area of each bone once they were processed. The colour code was as 

follows: blue represents superior edge, red corresponds to ventral area and green 

corresponds to cutaneous area (Figure 4.6). 

 

  

Figure 4.6 Colour coding of ribs (superior, ventral and cutaneous surfaces, study 

sample). 
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If the skeletal material is fresh, it should not be necessary to embed the 

specimens in hard epoxy resin. However, as the sample included fragile specimens, 

like individuals of advanced age with bone with thin cortical areas, the embedding 

process was carried out on all the specimens ensuring the integrity of the skeletal 

material during the cutting procedure. Apart from protecting the bone from flaking 

off, the epoxy resin provides a better precision in sectioning and handling of the 

specimen. EpoThin Resin 1® and 2® are suitable embedding agents able to fill the 

voids, pores and cracks present in dry bone tissues. The embedding solution is a 

mixture of Buehler EpoThin resin and Buehler EpoThin hardener in ratios as 

specified by the manufacturer. The quantities of both chemicals had to be modified 

according to the size of the rib to be embedded. Attention must be paid when mixing 

both chemicals in order to prevent overheating of the substance and air-bubbles. 

The solution was left to settle for at least five minutes before embedding the skeletal 

sample.  

 

The next step consists of encapsulation. Different sizes of hard and silicone 

moulds were used as containers for the embedding process. The selection of the 

container/mould depends on the size and shape of the ribs, and frequently 

modifications of the rib length might be advisable to make them fit into the molds. 

The sample was immersed in the mixture following these steps.   

 First, a piece of paper with the code of the individual written on it was placed 

at the bottom of the mould to keep track of the rib code.    

 Second, a thin layer of the mixture is placed over the paper covering the 

whole of the base of the mould. 

  Third, the bone was deposited over this first layer. 

 Last, the remaining solution was poured until the rib was completely covered 

by the EpoThin mixture.  

After a maximum of 72 hours at room temperature (for EphoThin 1; EpoThin 2 

curing time was improved to 9 hours at most), the solution was solidified. If the 

trabecular bone area had not been fully filled, a second deposition of resin must be 

done placing the rib vertically and making sure that the trabecular voids were now 

filled by the solution.  
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c. Cutting and thin-sectioning preparation 

The embedded rib samples are now ready for the thin-section cutting process. 

The embedding resin can be grounded down to remove the unnecessary plastic 

from the sample and/or to modify the specimen shape if it does not fit the bone 

chuck (diamond grit paper can be used for faster grinding).  

An IsoMet 1000 Precision Saw fitted with a 15LC diamond wafer blade (blade 

thickness 0.5 mm) is used for the generation of thin-sections. The tank of the cutting 

machine must be filled with approximately 60 centimetres of water, and optionally, 

some ordinary washing soap to ensure a smooth wet cutting and prevent damage 

from overheating. The specimen must be tightly held in the single saddle chuck 

suitable for rib bone size. The distance between the lever and the blade need to be 

adjusted to approximately 1 mm thick through the automatic distance control panel 

(it could be reduced up to 0.6 mm to minimise the grinding process).  

c. Grinding and mounting slides 

Before mounting the thin-section onto the grinding slide for continuing with the 

polishing process, the thin-section needs to be slightly polished on the corners to 

eliminate peaks or pointed edges that would not prevent the sample making contact 

with the grinding slide. Afterwards, the grinding slide is frosted using the MetaServ 

250 equipped with a Vector 250 power head. Placing the slide into a petro slide 

holder, the frosting process is carried out by hand with the aid of coarse grinding 

paper (CarbiMet Abrasive Disc 80, P-600 mm), which is an abrasive disc used for 

polishing processes. Regulating the speed of the MetaServ (at approximately 150 

RPM) and lubricating the sand paper with some water, the slide surface is ready to 

be adhered onto the slide. 

The frosted slide is correctly labelled providing each specimen a case code. 

Permount Mounting Media glue (Fisher Scientific®) is placed on the slide and the 

thin section placed over the glue and pressed gently with a wooden stick. Then, it is 

covered with paper towel and the sample secured using two paper clips making sure 

that pressure is applied on the thin-section. Three to four days at room temperature 

are necessary for the adherent agent to dry. 
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d. Grinding and mounting thin sections 

After removing the paper clips and most of the towel paper, the grinding slide 

is placed again onto the petro slide holder and carefully polished using the MetaServ 

250 at a speed 150 with 400 grinding sand paper to a thickness of 70-50 μm. During 

this procedure, it is extremely important to evenly press the whole surface of the 

specimen obtaining an equally polished thin-section. It is recommended to check the 

transparency of the section under a transmitted and polarised light microscope until 

the desirable features are visible. 

Once the thin section was readable, the grinding slide is placed inside a glass 

jar with Xylene (or other special glue solvent such as Neo-Clear®). An Ultra Sonic 

Cleaner (Buehler Ltd UK) water bath is used to help the dissolution of the glue 

through the agitation of the grinding slides. The jar is deposited inside the cleaner 

and left there for 5-10 minutes until the bone thin-section is released from the slide.   

It is then removed from the jar and left on towel to dry. The remaining xylene can be 

reused always following the Health and Safety requirements for hazardous 

chemicals. 

The reading slides are correctly coded (case number). Permount glue is gently 

spread on the slide and the thin-section is placed on the glue. A small quantity of 

glue is again deposited over the thin section and a wooden stick is used to lightly 

press the section to the reading slide. A glass cover slip is deposited over the bone 

section to protect it from future damages. A maximum of two days are necessary for 

the glue to dry. 

4.2.1.2. Specimen preparation: Methodology B 

The revised method was incorporated after a training session (funded by 

SCHA) carried out by Ian Chaplin, an expert on thin-section production, at the 

University of Durham (England). The method was recently published (García-Donas, 

Dalton, Chaplin et al., 2017). It is a modification of published methodologies 

(Chinsamy and Raath, 1992; Beauchesne and Saunders, 2006; Tiesler et al., 2006; 

Paine, 2007; Crowder et al., 2012; De Boer, Aarents and Maat, 2013), adapted to 

the sample under study (dry-bone) and to the equipment and consumables available 

at the Bone Histology Laboratory (Edinburgh).  
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As methodology A and B shared common steps, they will not be repeated but 

just mentioned. Rib preparation and embedding are the same in both 

methodologies. Before the cutting process, one of the ends of the resin block was 

grounded using an UltraPrep 20 μm diamond abrasive disc fitted to a MetaServ 250. 

The end of the resin block needs to be as even as possible and clean from 

imperfections because this surface will be directly bound on the glass slide and 

observed under the microscope.  For polishing this area, a silicon carbide abrasive 

disc fitted in the grinder-polisher is used. The grinding discs used ranged from 

abrasive (CarbiMet P1200 [FEPA]) to fine (MicroCut P2500 [FEPA]): initial polishing 

is achieved using an abrasive grade the polishing process is finished using a fine 

grinding disc (MicroCut P4000) 

As in Methodology A, the glass slide needs to be frosted before the resin block 

is mounted. This procedure is performed by taking the plane slide and frosting the 

surface using a glass plate. Logitech 15 μm calcined aluminium oxide powder is 

spread over the glass plate and the plain grinding slide is frosted applying moderate 

pressure and some water. Once the surface is evenly frosted, it is ready to be 

mounted on the resin block. The frosted slide is cleaned with soap and water. 

In this method, resin is also used as a mounting agent. A small quantity of 

resin is placed on the ground surface of the resin block and gently spread.  This 

surface is then pressed against the frosted surface of the glass slide applying slight 

pressure in circular movements. It is recommended to use weighted bonding jigs to 

ensure that it does not lift while the resin is curing. 

A glass slide chuck is used to cut the thin-section – in this case, a 27 × 46 mm 

slides chuck holder. A 1 mm thin-section was then cut using the IsoMet 1000. As a 

result, a section already mounted onto the grinding slice is now ready for polishing. 

For this final step, the same procedure as in Methodology A is applied for polishing 

the thin-section to a thickness of 70-50 μm. The final polishing is carried out using a 

MicroCut P4000 disc resulting in a clean and polished thin-section. A cover slip may 

be placed on the sample by again using resin as a bonding agent by following the 

same procedure explained in Methodology A.  

4.2.1.3. Maceration protocol (Cretan Autopsy sample) 

The autopsy sample is partially cleaned by an autopsy technician in Crete 

when the rib midshafts were extracted from the chest plate of the deceased. When 
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received in the Bone Histology Laboratory at the University of Edinburgh there were 

remaining flesh and bone marrow, and thus, cleaning and maceration procedures 

were carried out. The maceration procedure was performed in the Public Morgue 

(Edinburgh) following standard procedures. Previous removal of the adhering tissue 

before boiling is recommended. The samples are covered with clothing material and 

labelled and coded accordingly.  Biological powder was used to boil the specimens 

with boiling time varying depending on the size of the sample and the amount of 

adhering flesh (a minimum of 40 minutes is required). After boiling, the tissue started 

to soften and could be easily removed manually using a scalpel. Special care must 

be taken not to damage the periosteal surface. The protocol was updated from other 

standards maceration procedures (Fenton et al. 2003). The biological material was 

disposed following the standard procedures from the University of Edinburgh 

(COSHH form).  

4.2.1.4. Validation pilot study: sample preparation 

For the validation study, thin-section preparation followed all the steps 

included in Methodology A. A modification of the first step was necessary in view of 

extracting the six thin-sections from the length of the rib. The entire length was 

divided into three equal sections (labelled as proximal (vertebral), medial (midshaft) 

and distal (sternal)) and two thin-sections were taken from each segment. In order to 

cover all possible sampling sites within each segment, the three equal sections were 

divided into two equal length fragments and the two thin-sections were extracted 

from the middle of the two portions (Figure 4.7). A total of 36 sections were 

produced for this pilot study (6 thin-sections per rib). The sections were labelled as 

follows: 

 Proximal 1 (V1) and proximal 2 (V2) = most vertebral section (V1) and most 

sternal section (V2). 

 Distal 1 (S1) and distal 2 (S2) = most sternal section (S1), more proximal 

section (S2). 

 Midshaft 1 (M1) and midshaft 2 (M2) = most sternal section (M1) and most 

vertebral section (M2).  
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Figure 4.7 Preparation process for the pilot study sample: segment cutting for the 

extraction of six sections per rib (study sample). 

4.2.2. Data collection 

4.2.2.1. Rib parameters selection 

Histological estimation of age in human cortical bone is based on the 

observation of age-related changes in bone microstructure patterns.  The 

repeatability and accuracy of the parameters depends on the population under 

consideration, the criteria of the researcher and the research question. Ultimately, 

the target of this study is not only to find the best equation for age prediction on the 

Mediterranean samples, but also to find the most suitable equation based on 

method repeatability. 

4.2.2.2. Histomorphometry 

Unless stated otherwise, the abbreviations used for microscopic analysis were 

adopted from Parfitt et al. (1987); modifications have been applied in order to follow 

the recommendations  and recent update from the American Society for Bone and 

Mineral Research Committee (Dempster et al., 2013). The following 

histomorphometric variables were collected (Table 4.5): 

A. Measurements related to osteon number frequencies and densities (Figure 4.8):  

A. Variables related to osteonal structures:  

1. Intact osteon number (N.On): frequency number of intact osteons 

showing equal or more than 90% of the perimeter of the Haversian 

canal with no evidence of resorption (Stout and Paine, 1992). The 

following additional criteria were applied (Crowder, 2005; Heinrich, 

2015): 



www.manaraa.com

 

97 
 

-Two or more structures that shared a Haversian canal and there was no 

evidence (cement line) of two different events of bone remodelling but instead a 

single reversal line is observed. These structures were counted as one intact 

osteon. 

-Structures that were connected by a clear Volkmann´s canal were counted as 

two separate osteons. 

-Hemi-osteons appearing on the trabecular envelope as part of trabeculae 

plates were not counted as structures. 

- Primary vascular canals (primary osteons) were not counted as single intact 

osteons. 

 

2. Fragmentary osteons number (N.On.Fg): frequency number of intact 

secondary osteons that are a result of resorption due to subsequent 

deposition of osteonal structures having at least 10% of the Haversian 

canal perimeter remodeled (if present) (Stout and Paine, 1992). The 

following additional criteria were considered: 

- Fragmentary osteons with the canal not present due to remodelling can be 

differentiated from the interstitial bone by the identification of the concentric 

lamellae, the concentric direction of the osteocytes and the reversal line with a clear 

and irregular margin. Observation of the surrounding osteonal structures and 

lamellar bone is recommended in order to discern this type of fragmentary osteons. 

- Differentiation between interstitial lamellar bone and fragmentary osteons 

was achieved only if the previous criterion was observed; therefore, interstitial bone 

may include fragments of osteonal bone that cannot be identified due to posterior 

remodelling events removing the above-mentioned evidence. 

*Drifting osteons for both the identification of intact and fragmentary secondary 

osteons require special attention. This type of osteon is considered as stated by 

Robling and Stout (1999) as Haversian systems in which continuous resorption 

occurs on one side and continuous deposition occurs on the other producing an 

osteons that is surrounded by 4-8 concentric lamellae with one side showing an 

elongated “hemicyclically deposited tail” (Robling and Stout, 1999:193) . The length 

and shape of the tail is the result of transverse drift. When observing this type of 

structures, it is important to use both transmitted and polarised light while observing 

the tail of the drifting osteon; the continuous waves of concentric lamellae may 

appear as fragmentary osteons while in reality they are just continuous bone 
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formation of the same intact drifting osteon. There are cases in which the tail 

expands until it finds another previous structure and both osteonal systems overlap; 

in these cases, a clear cement line is observed delimiting the end of the drifting 

osteon tail and the beginning of the associated fragmentary osteon.   

3. Total Osteons (N.On.Tt): the sum of secondary intact and fragmentary 

osteon numbers. As follows: 

N.On.Tt = N.On + N.On.Fg 

Note that the symbols used to refer to osteon population densities –both intact 

and fragmentary densities- differ depending on the authors (Kerley, 1965; Stout and 

Paine, 1992; Goliath et al., 2016). For this study, the abbreviation proposed by 

Robling (1998) about intact and fragmentary osteon densities (N.On and N.On.Fg, 

respectively) was not followed due to possible confusion with intact and fragmentary 

osteons frequency number; instead, it is used for denoting number of structures as 

recommend elsewhere (e.g. Parfitt et al. 1987). In order to make a clear distinction 

between number of osteons and osteon population densities, the abbreviated 

nomenclature from Heinrich et al. (2012) for intact and fragmentary osteon density 

will be used. OPD abbreviation was used for osteon population density as in Stout 

and Paine (1992) and Goliath et al. (2016). 

4. Intact osteon density (OPD(I)) in number of osteons/mm2: the 

number of secondary intact osteons per mm2 (Stout and Paine, 1992). 

To calculate OPD(I), intact osteon number is divided by cortical area:  

OPD(I) = N.On / Ct.Ar 

5. Fragmentary Osteon Density (OPD(F)) in number of osteons/mm2:  

the number of secondary osteons per mm2. The number of 

fragmentary osteons is divided by cortical area: 

OPD(F) = N.On.Fg / Ct. Ar 

6. Total visible osteon density (OPD) number of osteons/mm2: the sum 

of the number of intact osteons and the number of fragmentary 

osteons visible on the surface area sampled, corresponding to total 

number of osteons divided by cortical area as follows: 

OPD= N.On.Tt / Ct. Ar
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Figure 4.8 Top left: green arrows indicating a drifting 

and a type I intact secondary osteons, blue arrow 

indicates fragmentary osteons, stars indicated 

lamellar bone (Cyprus_142). Top right: blue arrows 

(intact osteons, different types*), blue arrow 

(fragmentary osteons) (Crete_54). Bottom left: 

sampling locations (black outlined circle) for On.Cr 

parameters. Right bottom: example of On.Ar and 

On.Cr measurements (red outlined osteons). 

Specimens from study sample. 
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B. Measurements on bone surface related to cortical and trabecular bone 

areas (Figure 4.9):  

7. Cortical Area (Ct.Ar): amount of total cortical area sampled per 

section excluding the marrow cavity (cortical area per section, in mm2) 

(Parfitt et al., 1987; Pfeiffer et al., 2016); it corresponds to the 

extraction of the endosteal area to the total area as follows: 

Ct.Ar = Tt.Ar - Es.Ar 

Where, 

8. Total subperiosteal Area (Tt.Ar): the total bone surface that is 

surrounded by the outer periosteal perimeter, including cortical area, 

trabecular area and marrow cavity (Cho et al., 2006) (Figure 4.9). 

9. Endosteal Area (Es.Ar): the medullary cavity space which 

corresponds to the area under the marrow cavity (Cho et al., 2006; 

Ruff, 2008). The endosteal area is defined as the limit between the 

cortical area and the trabecular area. This delineation is somewhat 

subjective,  (e.g. Crowder et al., 2012). In this study, endosteal area is 

measured as shown in the microphotographs in Figure 4.9; the 

limitation is defined by intracortical remodelling being not obvious 

anymore and trabecular area morphology appearing at the endosteal 

limits. 

10. Relative Cortical Area (Ct.Ar/Tt.Ar): the relative amount of cortical 

bone in the cross-sectional area. It is calculated as the ratio of cortical 

area to total area (Cho et al., 2006). It measures the amount of cortical 

area that is independent of absolute bone size (Stewart et al., 2015). 
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Figure 4.9 Rib Area measurements: blue outline (Total Area), green outline 

(Endosteal Area). 

C. Osteons measurements (Figure 4.8): 

11. Mean Osteonal cross-sectional Area (On.Ar) in mm2: the average 

area of bone contained within the cement line of an intact osteon that 

has an intact cement line (including both circumferential lamellae and 

Haversian canal). Osteons showing Haversian canals deviating 

considerably from even circular profiles are excluded. For this 

parameter, the most circular osteon shapes were sought. In the case 

of drifting osteons, for example, no measurements were taken if the 

drifting osteon deviated considerably from circular shape (i.e. 

elongated tails) (Cho et al., 2002; Goliath et al., 2016). On.Ar is 

calculated as the average of a minimum of 25 to a maximum of 30 

osteons with these characteristics within the entire surface area.  

12. Osteon perimeter (On.Pm): the perimeter of the osteon area that 

corresponds to the area of bone contained by the cement line of an 

intact osteon (both circumferential lamellae and Haversian canal) 

(Thompson and Galvin, 1983). Osteons that deviated strongly from a 

circular shape are excluded. Mean osteonal perimeter is calculated as 

the average of the osteonal perimeter of a minimum of 25-30 osteons 

with these characteristics within the entire surface area. 

13. Osteon circularity (On.Cr): the parameter is defined by the circularity 

index that reflects the similarity of a measured object to the shape of a 

true circle. The index ranges from 1 to 0, with 1 indicating a true circle 

and 0 referring to elongated shapes. As recommended by Goliath et al. 
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(2016), only osteons that had intact cement lines and round Haversian 

canals are measured. Due to strain differences in osteon shape 

depending on the cortical bone area (van Oers et al., 2008), different 

locations within the same surface area need to be sampled. A 

minimum of 25-30 osteons are assessed. The index is calculated as 

follows: 

On.Cr = (4π (area/perimeter2)) 

Note: For On.Ar and On.Pm, it is recommended to sample different areas of 

the surface of the rib in order to cover all different sizes along the morphology of the 

cross-section. For the On.Cr parameter, four topographical areas over the rib 

surface must be sampled: superior, inferior and cutaneous and pleural areas (see 

Figure 4.8). Approximately six to eight osteons were measured on each sampling 

area. Due to the advanced age of most of the individuals included in this sample and 

thinning in the cortical area due to osteoporosis, the osteons could not be found 

within these four topographical areas in some cases, and therefore other areas were 

sampled. Moreover, as the age of the individuals increased, the possibility of finding 

“structurally complete intact osteons” (Goliath et al., 2016:282.e2) became more 

difficult as remodeling event started overlapping with each other over the entire 

cross-sections. These concerns must be considered for future application of these 

parameters in old age skeletal samples.
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Table 4.5 Summary of variables under consideration. 

Variable Abbreviation Brief Definition Author Calculation Data acquisition 

1. Intact osteon number N.On 
secondary osteon number with at least 90% of the of 

the Haversian canal perimeter visible 

Stout and 
Paine 
(1992) 

n/a 

Microscopy and 
photomicrographs: 
histomorphology 

qualitative 
observation) 

  
  

2. Fragmentary osteon 
number 

N.On.Fg 
secondary osteon number with at least 10% of the 
Haversian canal perimeter visible or not present 

n/a 

3. Total osteons N.On.Tt Sum of intact osteons and fragmentary osteons N.On + N.On.Fg. 

4. Intact osteon density OPD(I) Intact osteon number divided by cortical area (#/mm2) N.On/ Ct. Ar. 

5. Fragmentary osteon 
density 

OPD(F) 
Fragmentary osteon number divided by cortical area 

(#/mm2) 
N.On.Fg / Ct.Ar 

6. Total visible osteon 
density 

OPD  
Sum of Intact osteons and Fragmentary osteons 

divided by cortical area (#/mm2) 
N.On + N.On.Fg/ 

 Ct.Ar 

  

  

  

7. Cortical area Ct.Ar Cortical area sampled (mm2) 

Cho et al. 
(2006) 

Tt.Ar-Es.Ar 

ImageJ software 
(polygon selection 

tool) 
  
  

8. Total area Tt.Ar 
Surface area including cortical and trabecular areas 

(mm2) 
n/a 

9. Endosteal area Es.Ar area occupied by trabecular bone (mm2) n/a 

10. Relative cortical 
area 

Ct.Ar/Tt.Ar Ratio of cortical area to total area (mm2) Ct.Ar./Tt.Ar. 

11. Osteon area On.Ar 
Area within the cement line of an intact secondary 

osteon (mm2) 
Cho et al. 

(2002) 
On.Ar 

ImageJ software 
(freehand selection 

tool) 
  

12. Osteon perimeter On.Pm 
Perimeter of the area within the cement line of an intact 

secondary osteon (mm) 

Thompson 
and Galvin 

(1983) 
On.Pm 

13. Osteon circularity On.Cr 
Measure of the proximity of an osteon to a true circle 

(index) 
Goliath et 
al. (2016) 

(4π (area/perimeter2) 
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4.2.3. Data acquisition: microscopy and photomicrographs 

Data acquisition took place at the microscope laboratory in the Archaeology 

Department (SHCA, University of Edinburgh) and it was carried out by the author of 

this thesis. A standard research microscope (Leica DM750P with transmitted light) 

equipped with 4x, 10x and 20x objective lens and a 10x ocular lens was used to 

collect the histomorphometric data for each rib.  These lenses are necessary for the 

interpretation of the parameters with the medium magnification being used for 

osteon counting switching from x10 to x20 objectives to have a better understanding 

of the osteonal microstructures (Crowder et al., 2012). The microscope has a 

polarising filter, and so, both transmitted and polarised light were used in order to 

discern more clearly the histomorphometric variables and recognise specific 

features such as intact and fragmentary secondary osteons cement lines. The light 

and the filter were manipulated by the researcher depending on the thin-section 

under assessment to adjust transmitted-polarised views. Several trials were 

performed for the researcher to become comfortable with both the parameters and 

the equipment; results were compared in order to adjust the microscope settings 

before carrying out the final assessment on each rib.  

The Stout and Paine (1992) method consists of calibrating the microscope 

image with 10x oculars fitted with a standard counting reticule for area measurement 

and microscopic field delineation. This approach provided good results and is 

commonly used. For the present study a research microscope with a fitted camera 

was used for performing the histomorphometric analysis. It allows the researcher to 

capture photomicrographs of all the rib areas sampled and use image analysis 

software in combination with microscopic observation.  

A Leica DM750P research microscope equipped with 4x, 10x, 20x and 50x 

objective lenses and 10x ocular lenses fitted with a Leica MC170 HD camera was 

used to obtain the microphotographs. A minimum of 30 and a maximum of 80 single 

high-resolution microphotographs (depending on the amount of cortical area) from 

the entire cortex of each rib were taken at both 40x and 100x magnification. The 

Leica software provides the user with the option of incorporating a digital scale on 

the images. The scale function was adapted accordingly depending on the 

magnification used. The 40x magnification microphotographs were used to create a 

complete cross-section montage by using the ‘stitching’ option provided by the 

software; the compound image incorporates a calibrated scale allowing 
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measurement collection. The 100x magnification microphotographs were used for 

the collection of single osteon measurements. The images were saved in TIFF 

format for post-hoc analysis.  

For frequency number assessment (N.On and N.On.Fg) direct microscopic 

observation (as explained above) and microphotographs were used for collecting 

the data and ensuring the appropriate interpretation of the variables and accurate 

counting of structures. ImageJ software provides an option (multipoint selection) to 

create a permanent record on the image (numbered) as the structures are counted. 

This ensures that microstructures are not missed or counted twice by the observer. 

In order to measure rib area parameters (Tt.Ar, Es.Ar, Ct.Ar) and osteon size 

and shape (On.Ar, On.Pm and On.Cr) a free software platform (ImageJ 1.48) is 

used to perform the measurements (Schneider et al., 2012). To calibrate the 

images, the researcher needs to convert from millimetres or microns to pixel counts 

the length of the scale incorporated in the image by using the ‘Set scale’ command 

in the software. Once the images were calibrated, measurements can be taken. Rib 

area measurements are performed using the ‘Polygon selection tool’. A variation in 

the methodology was carried out for the calculation of cortical area parameter in the 

sampling error pilot study sub-set. A digital handheld microscope – a Dino Lite® – 

was used to take a picture of the entire cross-section and then ImageJ 1.48 was 

used to measure the area (Figure 4.10). 

 

Figure 4.10 Dino Lite® photograph; outlined in black (A) trabecular area selection 

(study sample).  

Osteon size and shape measurements were taken by using the ‘freehand 

selection tool’ and selecting the area and shape descriptors commands (see Figure 

4.8 left bottom image for an example); each individual osteon is outlined (for area 
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and perimeter together, and separately for circularity) and the osteonal variables 

were then averaged. 

Image capturing allows for the assessment of the histomorphometric variables 

and it is deemed to be a suitable viewing format for histomorphometric analysis as 

shown by Britz et al. (2009), Goliath et al. (2016) and Crowder et al. (2012). 

4.2.4. Statistical analysis 

 The following statistical methods are used to answer the research questions 

presented in this thesis (Figure 4.11): 

1. TEM analysis and Bland and Altman test are used to examine the 

repeatability and agreement between observers for the assessment of 

the histological variables. 

2. Descriptive statistics and errors are calculated to explore the impact of 

sampling location on the age estimates. 

3. Inaccuracy and bias along with other statistical approaches are used to 

verify whether four existing histological methods are suitable for the 

sample under study. 

4. Different statistical tests are chosen depending on the nature of the 

parameters to assess the relationship between the histological 

variables and age. The outcome is taken under consideration for the 

next statistical analysis. 

5. Those variables with the highest correlation with age are used for the 

generation of linear and multiple regression formulae (total study 

sample, and sex and population samples separately). The best 

formulae are selected based on accuracy and parsimony indicators 

(R², SEE, AIC and BIC) 

6. Two different techniques for the preparation of bone thin-sections are 

tested and the results compared qualitatively.   

The terms used during the course of this study are defined as follows. 

Repeatability refers to the capability of the same observer or different observers to 

reproduce the same value by measuring the same parameter under the same 

conditions. Accuracy is defined as the amount of error produced by an estimation, 

assessed as the difference between the estimate and the true value (in this study, 
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age at death). The prediction power accounts for the strength of the estimated age 

in comparison to the true age. 

 

Figure 4.11 Diagram for the research questions and statistical analysis applied 

(SEE=standard error of the estimate). 
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 4.2.4.1. Inter and intra-observer error evaluation 

Intra-observer error was examined by assessing OPD raw and composite 

parameters and Ct.Ar/Tt.Ar on 36 thin-sections. Osteon measurements variables 

(On.Ar, On.Pm and On.Cr) were assessed on 20 slides for which microphotographs 

were available. The observations were carried out with three months between first 

and second observation. Inter-observer error was tested using two different 

individuals. An observer with at least 30 years of experience assessed OPD raw and 

composite parameters on 16 thin-sections. These parameters are commonly 

considered to be biased by the observers´ experience. A second observer with three 

years of experience in histology (similar to the author´s experience) was used to 

assess the same parameters as well as osteon measurements on 20 slides. The 

target of this analysis was to test whether the observer´s experience has an impact 

on the repeatability. Each observer was given the necessary instructions and 

descriptions for successfully accomplished data collection. Ultimately, the 

observers´ scores were introduced in several age prediction formulae to understand 

to what extent observer error has an impact on the age estimates. All thin-sections 

for this analysis were selected at random from the total sample set. 

Repeatability between observations/observers was assessed calculating the 

Technical error of measurement (TEM), relative technical error of measurement 

(rTEM) and associated R coefficient (R). These values give an indication of the 

imprecision of the two observations (Ulijaszek and Kerr 1999). TEM (1) is defined as 

the square root of measurement error variance and calculated as follows,  

TEM=√
(Σ𝐷2)

2𝑁
      (1) 

 

Where D corresponds to the difference between the two observers or 

observations 1 and 2, and N is the number of cases observed. It is commonly used 

to assess repeatability providing a measurement of the imprecision of variance 

when the same sample of subjects is assessed, and it is expressed with the same 

units as the variables that are measured (Dahlberg, 1940; Harris and Smith, 2009).  

TEM can be transformed into the relative TEM (rTEM) (2) calculated as the 

standard deviation divided by the average of all the observations. It corresponds to a 

percentage based on the error related to the size of the variable (Harris and Smith, 

2009). It is formulated in the following way: 
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rTEM= (
𝑇𝐸𝑀

𝑚𝑒𝑎𝑛
) × 100      (2) 

Although left to the discretion of the researcher, a common threshold for 

agreement between observations is set up to 5% cut off value (Crowder, 2013). 

The coefficient of Reliability (R) (3) is used to assess repeatability in 

anthropometric measurement (De Onis, 2006); it has the advantage of allowing 

comparison between variables calculated as follows: 

R= 1 − (
(𝑇𝑜𝑡𝑎𝑙𝑇𝐸𝑀)²

𝑆𝐷²
)      (3) 

The formula in parenthesis corresponds to the squared of TEM (calculated as 

expressed in (1)), and the squared root of the standard deviation (inter-subject 

variance). It ranges from 0 to 1 (or expressed as percentage) indicating the 

proportion of error that is not related to measurement error. Acceptable levels of R 

are established to be > 95%, although it is dependent on the sample or population 

under study (Ulijaszek and Kerr, 1999). For example, other anthropometric studies 

considered 60 to 80% as substantial agreement (De Onis, 2006). If the differences 

between the observations are not normally distributed (assessed by Shapiro-Wilk 

Test (S-W)), natural log transformation of the parameters will be required (Giavarina, 

2015). 

The Bland-Altman analysis (B&A) (Bland and Altman 1986; 1995) was used to 

compare the assessment between observers and the possible proportional bias. 

The mean difference between observations must not be statistically significant 

different from zero. Mean difference between observations and its standard 

deviation were used to calculate the limits of agreement estimated as two standard 

deviation (1.96*SD) plus/minus the mean difference. The values are displayed on a 

scatter plot with the x-axis representing mean difference of the observations (due to 

the true value being unknown for the variables) and the y-axis representing 

differences between observations. The line of equality – in which all values should 

fall if there would be perfect agreement – is placed in the plot in order to evaluate 

bias. Through this analysis, the magnitude of variability in the measurements that is 

not represented by the TEM test is explored. To assess repeatability of the methods, 

the coefficient of repeatability (CR) (4) is calculated as follows: 

CR=: 1.96 ∗ √
Σ(𝑑2−𝑑1)²

𝑛
                                                         (4) 
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Where d2 and d1 is difference between measurements and n is the number of 

observations. 95% of the differences must fall within two standard deviations of the 

limits of agreement and the coefficient of variability to achieve repeatability (Barnhart 

and Barboriak, 2009; Vaz et al., 2013; Giavarina, 2015). 

4.2.4.2. Pilot study: sampling error. 

A pilot study was conducted to test whether rib sampling area has an effect on 

the age estimates. The null hypothesis (H0) states the following: minimum 

differences in the parameters values within the six thin-sections exist, and thus, 

accuracy levels are not biased by rib sampling area. If rejected, some differences 

would be observed for OPD along the length of the rib (H1). For this study, one 

single variable was assessed (OPD). To test the effect that sampling sites can have 

in the estimation of age-at-death, two existing histological formulae were applied 

and the estimates for the sample under study calculated (Stout and Paine, 1992; 

Stout et al., 1994) (see Table 4.6 in next sub-section for respective methods 

information).  

The degree of variability within the six sections of the same rib was explored 

by calculating basic descriptive statistics as well as range, variance, interquartile 

range and the coefficient of variability (CV: ratio of SD) for the histological variables 

and estimated ages for each individual. These values give an approximation of the 

dispersion of the scores obtained by each thin-section within the same rib. The 

range simply indicates the difference between the highest value and the lowest 

value. Variance represents the squared average of the difference in relation to the 

mean with larger variance indicating more variability. The interquartile range is again 

an indication of the variability although without taking into consideration extreme 

values, calculated by extracting the 75th percentile and the 25th percentile (Cramer 

and Howitt, 2004). The thin-sections with the largest and lowest values for each 

variable per individual were identified to examine whether there was a recognisable 

pattern.  

The age estimates obtained by each method (Stout and Paine, 1992; Stout et 

al., 1994) were used to explore the intra-costal mean error rates (mean difference 

between the errors in the age estimates produced by the six sections within the 

same rib (5)) and mean percentage error rates (6) (average of percentage error 
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calculated by comparison between the age estimates and known age), calculated as 

follows: 

(Mean) Error Rate= Estimated Age- Known Age   (5) 

(𝑀𝑒𝑎𝑛) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = (100 ∗ 𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒)  ÷  𝐾𝑛𝑜𝑤 𝐴𝑔𝑒 (6) 

4.2.4.3. Validation pilot study 

To explore whether population specific standards were required for the study 

sample, four existing age prediction methods (Stout and Paine, 1992; Stout et al., 

1994; Cho et al., 2002; Goliath et al., 2016) (Table 4.6) were applied to the entire 

sample. 

Table 4.6 Existing age prediction formulae and standards applied on the 

Mediterranean samples. 

Author/year Methodology Formulae SEE 

Stout and Paine 
(1992) 

6th rib, middle 
third  

Ln_Age= 2.343 + 0.050877(OPD) 3.9* 

Stout et al. (1994) 
4th rib, sternal 
sampling area 

Age = 18.389 - 0.731 * (OPD) + 0.110 * 
(OPD)² 

 

 
10.43 

 

Cho et al. (2002) 
6th rib / middle 

third 

European-American: 
Age=38.029+1.603(OPD)-882.210(On.Ar*1)-
51.228(Ct.Ar/Tt. Ar)+57.441(Ct.Ar/Tt. Ar*1) 

12.22 
 
 

Unknown Ethnicity: 
Age =29.524 + 1.560 (OPD) + 4.786 

(Ct.Ar/Tt.Ar) - 592.899(On.Ar) 

African-American: 
Age=38.029+1.603(OPD)-51.228(Ct.Ar/Tt. Ar) 

Goliath et al. (2016) 
standard rib, 
middle third 

Age= -472.331 + 591.369 (On.Cr) 6.06 

*Absolute difference from known and estimated age 

Four histomorphometric parameters were assessed (OPD, Ct.Ar/Tt.Ar, On.Ar 

and On.Cr) according to the description provided by the original methodologies 

(Stout and Paine, 1992; Stout et al., 1994; Cho et al., 2002; Goliath et al., 2016). 

The values obtained from the histomorphometric parameters were entered in the 

original formulae and age estimates calculated. Descriptive statistics, test of 

normality and Pearson´s Correlations for the entire dataset and the data separated 

in groups (sex and samples, separately) were used to examine the data.  
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According to Lovejoy and co-workers (1985b) to test inaccuracy (7) and bias 

(8) of the methodologies, these values must be calculated on the entire sample, the 

entire sample divided in age cohorts, and on sub-sample sets (both sex and 

samples subgroups). The following formulae are applied: 

  Inaccuracy (years) = Σ|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑔𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑔𝑒|/𝑁   (7) 

Bias = Σ (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑔𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑔𝑒)/𝑁    (8) 

Where inaccuracy (7) corresponds to the sum of all the absolute errors 

obtained from each case divided by the number of individuals; and bias (8) 

represents the sum of the errors obtained from each case divided by the number of 

cases. The absolute average error represented by the calculation of inaccuracy 

while the term bias would reflect whether a systemic over- or under-estimation of 

age was produced by the existing formulae.  

To test whether the age estimates were significantly different from the known 

ages, Wilcoxon signed rank test was performed on the entire sample and sub-

sample sets. This statistical test takes the difference between the scores and ranks 

the data in positive and negative values assuming as null hypothesis that the 

median difference between pairs equals to zero, and therefore, no statistical 

significant difference exists (McDonald, 2014).  

The level of agreement between the age estimates and known age was 

represented graphically by B&A plots (Bland and Altman, 1986; 1995). Difference 

between estimates and known age were calculated and the mean difference was 

tested statistically. If not significant, the difference between estimated age and 

known age was plotted against known ages; the previous calculated bias was set on 

the plot and the upper and lower limits of agreement calculated (as expressed 

previously). The best line of fit was also represented to examine the over- or under-

estimation of the methods. 

4.2.4.4. Age and histological variables analysis  

The data were analysed based on the following null hypothesis (Ho): there is 

no relation between age and the variables observed in the microstructure of rib 

cortical bone in the means of the sample under study. If the data demonstrate the 

opposite as stated before (H1), then the null hypothesis is rejected indicating that 

there is a correlation between histological variables and age. 
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Several statistical tests were performed to examine the relationship between 

the variables and age for the entire sample, and for sub-sample sets (males and 

females and Cretans and Cypriots, separately).  General summary descriptive 

statistics were used as a first approach to the data. Normal distribution indicators 

(skewness and kurtosis) along with Shapiro-Wilk Test (S-W) were used to examine 

the distribution of each variable. Skewness and kurtosis values, and Z-score for 

skewness and kurtosis (respective value divided by its standard error) should fall 

between the threshold of ± 2; this threshold indicates a 95% confidence interval 

representing the two standard deviations limits expected for data normally 

distributed (Cramer, 1997; Tabachnick and Fidell, 2007). The Shapiro-Wilk Test (S-

W) indicated whether the sample distribution was statistically significantly different 

from a normal distribution (Shapiro and Wilk, 1965). The S-W Test is commonly 

applied to small and medium sample sizes, although for samples bigger than 40 

cases the normality assumption should not cause major statistical violations 

(Ghasemi and Zahediasl, 2012). Pearson´s correlation coefficients were used to 

determine the direction and strength of the linear relationship between age and all 

the variables included in this study providing a range of values from -1 to +1 (0 

being no correlation between the continuous variables). For those parameters that 

are not normally distributed, the non-parametric alternative to Pearson´s correlation 

coefficients - Spearman´s Rank Order Correlation Coefficient - was calculated 

(Cramer and Howitt, 2004). 

In testing sex and sample histological parameters variation, the null 

hypothesis (H0) states that no difference between the parameters (both raw and 

composite variables) exists between the sexes and between the samples. If 

rejected, the alternative hypothesis will confirm differences between the parameters 

and the sub-groups (H1).  

The age distribution between sexes and samples was compared using a 

Welch's t-test  (Kohr and Games, 1974). Depending on whether the assumption of 

normalcy was confirmed or not, parametric (Welch´s t-test) or non-parametric test 

(Mann-Whitney U) were performed to compare the two groups (Figure 4.11). 

Welch´s t-test responds to unequal variances and unequal sample sizes to compare 

two independent samples (Welch, 1951). Mann-Whitney U compares one group to 

the other by ranking the number of times scores considering that the two samples´ 

scores have been treated as a single group. If each sample counts with more than 
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20 cases, as in this study, the U values are transformed into z-values that have to 

be equal or more than 1.96 to be statistically significant at 0.05 two-tailed level 

(Cramer and Howitt, 2004).  

Next, One-way ANCOVA was performed to further explore the relationship 

between age, samples and the parameters. The dependent variable was each 

histological parameter, group was set as the factor (either sex or sample), and age 

as the covariate. This analysis will allow to determine whether group membership 

has a significant effect on the dependent variables and whether age is a significant 

covariate (Kim et al. 2007; Huitema, 2011; Crowder, 2013).  If the variables were not 

normally distributed, the natural log transformation was performed. The statistical 

assumptions tested for ANCOVA analysis were the following: linearity, homogeneity 

of regression slopes, normal distribution of standardised residuals, homoscedasticity 

of residuals, homogeneity of variances and identification of outliers (Tabachnick and 

Fidell, 2014). Variable transformation and bootstrapping procedures were carried 

out to confirm the results on those variables violating any of the assumptions 

(Huitema, 2011; Johnson, 2016; Laerd Statistics, 2017).  

Finally, general linear models (GLM) with Chow test were performed in an 

exploratory basis in order to verify whether the regression slopes for each variable in 

relation to each group differ. The slopes and intercepts were tested for equality by 

taking the dependent variable (age), the group (sex or sample) as a fixed factor and 

the predictor (histological variables) as covariates. In the GLM analysis menu, the 

design subcommand was modified as follows: /Design = x Group*x. The Group term 

was included to determine if the intercept differed between the groups and the 

Group*x to determine if the slopes were different (Crowder, 2005). 

4.2.4.5. Generalised Linear Models. 

The relationship between the histological parameters and age, as well as sex 

and samples, was previously assessed. The information gathered was then used for 

the generation of age-predicting formulae through regression analysis. Even though 

most of the statistical analysis consisted of linear regression, different types of 

modelling (e.g. curvilinear models) were tested to assess the best fit of the data 

(Aykroyd and Lucy, 1997).  

The main purpose of the regression analysis is to find the best fit of the data 

based on the least squared criterion. The so-called “best fit model” is meant to 
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minimise the sum of squared errors that are called residuals which represents the 

difference between the model prediction and the true data (see below). Following 

the general procedure for this type of statistics, the general form for a simple linear 

regression model is expressed by the following mathematical formula (9): 

     Y = α + βx + ɛ               (9) 

where Y is the dependent variable or criterion variable (age); α is the constant 

(intercept of Y, point of intersection of the Y-axis); β is the regression coefficient that 

corresponds to the slope of the regression line indicating how many units the 

dependent variable will change given a one-unit change in the independent 

variable), and X corresponds to the observed variable named independent or 

predictor variable (e.g. OPD). Ɛ represents the error of prediction or residuals which 

accounts for the portion of Y that was not predicted by X. 

The regression line for the sample (prediction model) (10) describes the data 

as follows: 

𝑦 ̂ =  𝑏0 + 𝑏1 𝑥      (10) 

Where 𝑦 ̂ corresponds to a specific predicted or estimated y and x to the actual 

observed value for that specific case. Therefore, the regression model includes the 

prediction error while the prediction models has it implicit in 𝑦 ̂ by the presence of the 

error between estimates and true values (Lomax and Hahs-Vaughn, 2012). The 

values 𝑏0 and 𝑏1 are again the slope (11a) and the intercept (11b), respectively, and 

they are estimated from the dataset values as follows: 

𝛽ΥΧ = 𝜌ΥΧ  
𝜎Υ

𝜎Χ
                                 𝛼ΥΧ = 𝜇Υ − 𝛽ΥΧ𝜇Χ  (11a, 11b) 

Where σ for x and y is the population standard deviations, respectively; ρYX  is 

the population correlation between x and y, and μ are the population means for both 

x and y, respectively (Lomax and Hahs-Vaughn, 2012). 

The regression coefficient value is not proportional to the relative strength of 

the relationship between the variables. Instead, it reports the percentage of variance 

of the dependent variable explained by the regression model. Thus, the coefficient 

of determination or R2 value provides information about how well the model fits the 

data. This value is obtained through the square of the correlation coefficient (R2). 

R2 = 
𝑆𝑆𝑅

𝑆𝑆𝑇
       (12) 
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Where SSR is the regression total sum of squares and SST refers to the total 

sum of squares. The subjective power of the effect size of the R2 coefficient differs 

according to different authors´ opinions (e.g. Smithson, 2001). 

The goodness of fit statistics are also examined by observing results from 

several significance tests and the confidence interval (see below). The significance 

test involves evaluating whether the dependent variable is actually a significant 

predictor of the independent variable (using F statistics at the 0.05 significance level 

and evaluating the standard errors, two-sided p-values for the t statistics for the 

regression coefficients). As expected, the relation between dependent and 

independent variables is inexact, and therefore, the estimated values obtained 

through the prediction equation present certain proportion of errors. The residual 

values are known also as error of estimate, which is calculated by subtracting 

expected values (Y´i) from actual values (Yi) for each individual (13), with the 

purpose of estimating the error term predicted by the statistical model: 

ei = Yi – Y´I      (13) 

Residuals were tested through visual assessment of diagnostic plots for each 

relevant model. The corresponding statistical tests, as the S-W Test, and skewness 

and kurtosis values were also reported. Note that graphical methods such as a Q-Q 

plots in sample size larger than 50 are highly recommended due to Shapiro-Wilk test 

flagging minor deviations from normality as statistically significant (Laerd Statistics, 

2017). The assumptions of linearity, normality, independence and homogeneity of 

variance of the residuals were assessed through the examination of residuals 

versus predicted values, Q-Q plots, scale-location plots and standardised residuals 

versus Leverage values (Kutner et al., 2005; Kim, 2015). Test for independence of 

residuals (Durbin-Watson) was also reported for the generated models with an 

acceptable level for values ranging from 1 to 3 (Field, 2009). Independence of errors 

was further assessed by standardised residuals versus standardised predicted 

scatter plot for which all values should fall within ± 3 with a non-specific pattern 

(Lucy, 2005). Extreme values were examined by studentised residuals, Leverage 

values and Cook’s distance values in order to identify influential cases (Cook and 

Weisberg, 1982; Fox, 1991). When a case was considered to be a regression 

influential outlier, the regression analysis was repeated without this case and 

hypothesis testing, beta coefficients and standard errors and prediction accuracy 

rates compared between the models. Diagnostic plots examination will verify 
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whether the model is appropriate and the assumptions of the regression analysis 

have been violated.  However, minor violations of these assumptions are generally 

accepted in least square regression analysis as it is a robust statistical analysis 

(Lucy 2005).   

After calculating all error values for each case, the total prediction error (TPE) 

is obtained. It will be replaced by the sum of the squares of errors (SSE) (14) 

representing the line that actually minimises the error rates. It is calculated as 

follows: 

    SSE= ∑ (Yi- Ŷi)2     (14) 

The variation for all the prediction errors around the regression line can be 

estimated as: 

    Se = √  
(Yi− Ŷi)2

n−2
      (15) 

This last formula is the so called standard error of estimates (also known as 

Root Mean Squared Error) (15) that corresponds to the estimated standard 

deviation of the actual Y from the predicted Ŷ. As suggested in other studies, the 

confidence interval for Y at a given value of X can be calculated using the standard 

error of the estimate (generally falling in 95% of confidence for an estimated age for 

this type of studies) (see Giles and Klepinger (1988) for a detailed description). A 

prediction interval can be also calculated as the estimation of the value of the 

independent variable to a particular value of the response variable (Utts and 

Heckard, 2014).  

 In the case of incorporating multiple independent variables to the equation, 

Multiple Linear Regression was applied. Multiple regression is a statistical tool that 

investigates the simultaneous relationship between several independent or 

response variables and a single dependent or criterion variable (age). Considering 

the overall model fit of the independent variables included in the equation as 

aggregate, the null and alternative hypotheses for multiple linear regression states 

that the regression coefficients would be equal or different from zero (respectively): 

H0: β1 = β2= … = βk = 0 

H1 : not all the βk = 0 
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Most of the principles described previously for the linear regression are also 

valid for multiple regression with some minor modifications. Therefore, only 

theoretical definitions (for those that change from one model to the other) will be 

presented here. One remarkable difference in that in this case, the relation between 

dependent variables and the independent one is represented in a three dimensional 

plane (Lomax and Hahs-Vaughn, 2012). The multiple regression formula for the 

sample prediction model (16) is expressed as follows:  

   Y´i = α + β1X1i + β2X2i +…+βkXki    (16) 

Where α is the intercept of the regression line for Y´i predicted by a group of 

values of Xk´s (predictors where k=1,…,m) and βk is the partial slope for the 

regression line for that particular Xk value. The errors are calculated as previously 

and the least squared criterion is also applied to minimise the residuals or squared 

prediction errors. The multiple coefficient of determination (R2) is expressed as 

R2
y.1,…,m where the subscript Y is the dependent variable and X1,…,m are the various 

independent variables. The adjusted R2 is used for interpreting the amount of 

variation in Y explained by the set of X variables by adjusting for sample size and 

number of predictors. Testing the goodness of fit for the model requires the same 

concepts as described earlier for the simple regression analysis (Lucy, 2005). 

Partial correlations and multicollinearity between the independent variables 

must be examined to verify whether there is certain degree of dependency between 

the predictors, and therefore overlapping of their variances. Tolerance indicates the 

unique proportion of variance of an independent variable, and the variance inflation 

factors statistics (VIF, inverse to tolerance) corresponds to the variance of the 

estimate coefficient from an independent variable inflated when compared to a non-

collinearity case. Generally, values of more than 10 for VIF are associated to 

multicollinearity issues (O’Brien, 2007; York, 2012). Multicollinearity can be also 

examined by performing regression of the independent variable on the remaining 

variables, with R2 less than 0.90 suggesting non-collinearity  (Lomax and Hahs-

Vaughn, 2012). 

The inclusion of dummy variables (group variables) such as sex and/or 

population to test the impact of the inclusion of the categorical predictors was 

examined. The groups were coded in a process called “dummy coding”. The 
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variables were then inserted in the regression functions and the models fitted and 

examined.  

The General Linear Models (GLM) models are performed using Gaussian link 

function and maximum likelihood fitting assessing model selection according to 

significance levels, ANOVA x2 test and Akaike information criterion (AIC). Special 

attention in the criteria used for model selection based on goodness of fit and 

number of parameters. The already mentioned R2 and SEE were considered to 

compare the results of this analysis with previous published works. Statistical model 

selection estimators generally not used in previous histological studies – but 

commonly used in ecology – were applied on the basis of parsimony through 

assessing best fit and complexity of the model (Aho et al., 2014). The parsimony 

relates to the concepts of under-fitting and over-fitting of a given model taking into 

account the number of parameters, the model structure and the variables under 

consideration; the goal is to choose a model that is as simple as possible (Burnham 

and Anderson, 2002). 

AIC criterion is a measure based on the relative likelihood of the model given 

the data; it considers all the generated models with penalization of the model 

complexity (Akaike, 1973). In a model given p parameters the AIC calculation (17) is 

as follows:  

AIC= -2 ln L(�̂�) + 2p      (17) 

Where L(�̂�) is the maximum likelihood of the estimated model that in 

regression includes the likehood of the model parameters in N (0,�̂�2) representing 

the model residuals, while �̂�2 represents the “maximum likelihood estimate for the 

variance of the error term distribution” and p corresponds to the total number of 

parameters estimated to be in the model (Aho et al. 2014:632). A modification of 

AIC, known as AICc  (18), accounts for a correction factor for sample size calculated 

as:  

AICc = AIC+(2K (K+1))/(n-K-1)      (18) 

Where K expresses the total estimable number of the parameters included in 

the model and n corresponds to the sample size. 
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According to Kullback-Leibler (K-L) information, the strength of each 

hypothesis (each model) can be measured and compared to other hypotheses 

(models) (i.e. from Hi  to HR) based on the estimators obtained (AIC in this specific 

case). Thus, comparison across models is the only viable way to approximate to the 

“best model” (Burnham et al., 2011). The computation of the difference between AIC 

values (Δ)  provides results that can be interpreted and used to rank the models and 

support the selection of one model over the other, as follows (19): 

Δi = AICci - AICcmin;     for i ¼ 1; 2; . . . ,R.    (19) 

Where the AICcmin is the minimum AIC value obtained for R models and it 

commonly used for model inference and define a rank of the generated models 

(Burnham and Anderson, 2002).  

The other estimator used is the Bayesian information criterion (BIC) (20) 

(Schwarz, 1978) which is defined as follows: 

BIC= -2 ln L (�̂�) + p ln n     (20) 

Where n refers to the sample size (see description for (17)). BIC penalizes 

model selection strongly than AIC and it is independent of sample size (Aho et al., 

2014). 

For both AIC and BIC indices, the smaller the value the better the model. 

All data analysis was conducted using IBM SPSS version 22.0 (SPSS, Inc., 

Chicago, IL) and RStudio version 3.4.1 (RStudio Team, 2015).  

4.2.4.6. Thin-section preparation 

The last section corresponds to the comparison of the two methodologies (A 

and B) used for the preparation of the thin-sections. A qualitative analysis of the 

quality of slides obtained by each method was presented. 

4.2.5 Summary 

Most of the Cretan and Cypriot rib samples were obtained from two cemetery 

populations from Heraklion (Crete) and Limassol (Cyprus). Seven Cretan individuals 

from forensic cases were included in the data set. From the original dataset (N = 

105), a number of cases were discarded due to following reasons: pathological 
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conditions (N = 11), under-aged individuals (N = 2), non-Greek origin (N = 1) and 

diagenesis (N = 3). The final study sample consists of 88 individuals with an age 

range from 19-100 years and a mean age of 60 years (SD = 17.88) (Figure 4.5). 

The entire sample comprised an even number of males and females (Males = 40, 

Females = 48).  An additional 36 thin-sections (six sections extracted from six ribs) 

were processed and assessed for the sampling error pilot study.  

As presented in section 4.2.4, the statistical approach comprises five main 

tests (Figure 4.11). Two methods for the preparation of bone histological slides were 

applied. The technical aspects of each method were explained in detail and they will 

be discussed in the next chapter.  
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Chapter 5 : RESULTS 

This chapter is organized in six sections. Section 5.1 presents the results for 

intra- and inter-observer error. Section 5.2 covers the outcome of the pilot study 

exploring sampling error of six different rib sections along the length of six different 

ribs. Section 5.3 presents the results of the validation of four different existing age 

prediction methods. Sections 5.4 and 5.5 focus on the main statistical analysis for 

the generation of the age prediction models. The last section (5.6) offers a 

qualitative comparison of the thin-section prepared using the two different 

histological techniques. 

5.1. Intra- and inter-observer error   

5.1.1. Intra-observer error 

Intra-observer error was analysed through TEM and Bland-Altman (B&A) plot 

analysis on a sub-sample of 36 thin-sections. All of the parameters related to the 

composite variable OPD and its raw parameters (N.On, N.On.Fg, N.On.Tt, OPD(I), 

OPD(F), Tt.Ar, Es.Ar, Ct.Ar and Ct.Ar/Tt.Ar) were examined for the sub-sample. 

Variables related to secondary osteon measurements (On.Ar, On.Pm and On.Cr) 

were assessed on 20 slides from the total sub-sample set.  

Intra-observer TEM results are shown in Table 5.1. All variables except On.Cr 

showed error rates with R > 0.97 which indicates that about 3% of the variance can 

be attributed to intra-observer measurement error. This falls within the 5% accepted 

threshold (Ulijaszek and Kerr, 1999). 
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Table 5.1 TEM results for intra-observer error. 

 

TEM Relative TEM R 

N.On 1.89 1.37 0.99 

N.On.Fg 1.94 2.94 0.99 

N.On.Tt 2.57 1.26 0.99 

OPD (I) 0.13 1.86 0.99 

OPD(F) 0.12 2.91 0.98 

OPD 0.19 1.69 0.99 

Tt.Ar 0.46 0.87 0.97 

Es.Ar 0.44 1.35 0.99 

Ct.Ar 0.36 1.77 0.98 

Ct.Ar/Tt.Ar 0.006 1.33 0.99 

On.Ar 0.002 2.90 0.99 

On.Pm 0.02 2.86 0.97 

On.Cr 0.01 1.16 0.90 

All the values obtained from Bland-Altman (B&A) analysis for all of the 

mentioned variables are reported here.  The Shapiro-Wilk test (S-W) was performed 

on the difference between observation with all the variables being normally 

distributed (S-W p-value < 0.05) except for OPD, Es.Ar, Ct.Ar/Tt.Ar and On.Pm for 

which a natural log transformation of the parameters was recommended. The mean 

difference between observations was not statistically significant from zero as 

indicated by one sample T-test except for OPD(F) and Tt.Ar (p = 0.037 and p = 

0.030, respectively). No further analysis was carried out on these two variables as 

repeatability was not achieved through this test. The B&A coefficient of repeatability 

for N.On was ± 5.24 with a mean difference of -0.05 in osteon number (p = 0.90). 

N.On.Fg produced a mean difference between observations of -0.44 (p = 0.33) with 

a coefficient of repeatability of ± 5.36. N.On.Tt mean difference accounted for -0.38 

(p = 0.53) with a coefficient of ± 7.12. OPD(I) presented a mean difference of -0.01 

(p = 0.65) with coefficient of repeatability of ± 0.36. The B&A repeatability coefficient 

for LnOPD was ± 0.058 with a mean difference of -0.01 (p = 0.07). The mean 

difference calculated for LnEs.Ar was 0.003 with a coefficient of repeatability being ± 

0.037. Ct.Ar coefficient of repeatability was estimated as ± 1.01 with a mean 

difference between observations of 0.16 (p = 0.07). LnCt.Ar/Tt.Ar mean difference 

was 0.0014 with a coefficient of repeatability of ± 0.037. On.Ar mean difference was 

calculated as 0.001 not being statistically significant (p = 0.29) and presenting a 

coefficient of repeatability of ± 0.003. LnOn.Pm obtained a mean difference of -
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0.013 (p = 0.09) with a repeatability coefficient of ± 0.06. Lastly, On.Cr presented a 

coefficient of repeatability of ± 0.029 with a mean difference of 0.17 (p = 0.17).  

All of the values obtained from the B&A analyses are represented in a scatter 

plot (see Figure 5.1). The limits of agreement and coefficients of repeatability for 

each parameter were calculated as described in the previous chapter (section 

4.2.4.1) and were included in the scatter plot along with the reported mean 

differences. In this section, the B&A plot for LnOPD is used as an example (Figure 

5.1). The LnOPD Bland-Altman plot shows a random distribution of points indicating 

no proportional bias with 95% of the values falling within the limits of agreement 

(solid line); the coefficient of repeatability limits are represented by the dashed line 

where 95% of the variability is expected to fall The limits of agreement can be 

calculated on the original scale by taking the anti-log of these values (upper and 

lower limits of agreement of 1.05 and 0.94, respectively) (Grilo and Grilo, 2012). The 

remaining B&A plots for intra-observer error are presented in Appendix B.1. 

 
Figure 5.1 Intra-observer error B&A plot (LnOPD): limits of agreement represented by 

the solid line, coefficient of repeatability by the dashed line, and mean difference by 

the dotted line. 

5.1.2 Inter-observer error 

Inter-observer error was assessed by conducting TEM and B&A analyses from 

two different observers with different levels of histological experience –one highly 

experienced observer (observer A) and one individual with similar level of 

experience (observer B). All the raw variables included in the calculation of OPD 
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were examined as well as the composite variables that are commonly used in aging 

methods (e.g. Cho et al. 2002). 

The TEM, relative TEM (rTEM) and associated R values indicated that high 

reliability was achieved for most of the parameters except for N.On.Fg and OPD(F) 

for both observers (Table 5.2). Results for N.On and N.On.Tt suggested that no 

more that 3% of the variance was attributed to measurement error with rTEM not 

exceeding the 5% threshold. N.On.Fg results indicated that between 19% and 12% 

of the variance was due to measurement error for observer A and observer B, 

respectively, with an rTEM above the limit of acceptance. OPD(I) rTEM results for 

the observer A was just above the 5% threshold (5.30) with 5% of the variance 

attributed to measurement error while the observer B achieved higher repeatability 

with only 2% of the variance attributable to measurement error. As a variable 

collected by multiple observers, OPD(F) demonstrated low reliability. This was 

indicated by the rTEM assessment value, which was higher than the accepted 

threshold for both observers. R values indicated that around 20% of the variance 

was attributed to measurement error for observer A while 14% of the variance was 

related to error for observer B. OPD scores produced an rTEM below the 5% 

threshold with 3% of the variance related to measurement error for the experienced 

observer; the same parameter produced an rTEM slightly above the threshold (7.20) 

with 6% of the variance attributable to error for observer B.  The remaining variables 

(Tt.Ar, Es.Ar, Ct.Ar and Ct.Ar/Tt.Ar) were all under the 5% threshold for rTEM with 

only Es.Ar slightly exceeding the 5% threshold for observer A. However, all these 

parameters demonstrate high repeatability with no more than 4% of the variance 

due to measurement error. 
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Table 5.2 TEM results for inter-observer (experienced histologist – observer A – and 

similar level of experience observer – observer B). 

 

Experienced histologist A (N=16) 
Same experience observer B 
(N=20) 

 
TEM Relative TEM R TEM Relative TEM R 

N.On 0.37 4.84 0.97 5.38 3.79 0.99 

N.On.Fg 5.28 20.67 0.81 13.84 15.54 0.88 

N.On.Tt 3.49 2.22 0.98 16.22 7.02 0.96 

 OPD (I) 0.26 5.30 0.95 0.14 1.60 0.98 

 OPD(F) 0.20 19.73 0.79 0.96 16.43 0.86 

OPD 0.22 3.71 0.97 1.04 7.20 0.94 

Tt.Ar 2.12 3.75 0.96 0.26 0.51 0.99 

Es.Ar 1.81 5.96 0.97 0.22 0.61 0.99 

Ct.Ar 0.90 3.43 0.97 0.25 1.58 0.99 

Ct.Ar/Tt.Ar 0.01 3.77 0.97 0.004 1.22 0.99 

 

Inter-observer error for On.Ar and On.Pm obtained TEM values of 0.001 and 

0.010, and rTEM values of 3.06 and 1.58, respectively (observer B). The amount of 

variance that was related to measurement error was 2% and 1% (R being 0.98 and 

0.99 for On.Ar and On.Pm, respectively). All values fell within the acceptable levels 

indicating that high repeatability was achieved. TEM and rTEM values for On.Cr 

were 0.014 and 1.56; a low R value was obtained (0.62) indicating that only 

substantial agreement was accomplished. 

B&A analysis was determined for observer A with the following results. 

According to one sample T-test results, statistical significance was found for 

N.On.Fg, OPD(F), Tt.Ar, Es.Ar and Ct.Ar/Tt.Ar (p < 0.05). Based on these results, 

no further analysis was performed on these parameters. The remaining variables 

were tested for normality indicating that they approximated a normal distribution (S-

W > 0.05).  N.On repeatability coefficient was ± 17.67 with a mean difference of -

3.31 (p = 0.15). N.On.Tt repeatability coefficient was estimated to be ± 9.68 with a 

mean difference between observations of -0.62 (p = 0.96). For OPD(I), the mean 

difference between values was -0.03 (p = 0.77) and the repeatability coefficient  ± 

0.74. OPD coefficient of repeatability was ± 0.61 with a mean difference between 

values of 0.16 (p = 0.23). Ct.Ar mean difference was -0.33 (p = 0.31) and the 

coefficient of repeatability estimated as ± 2.49. According to the B&A plots for OPD, 

94% of the cases fall within the limits of agreement and the coefficient of 
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repeatability (Figure 5.2). No proportional bias is observed as assessed by the 

random distribution of values above and below the mean difference line. 

 
Figure 5.2 B&A plot (OPD), experienced histologist (observer A): limits of agreement 

represented by the solid line, coefficient of repeatability by the dashed line, and mean 

difference by the dotted line. 

B&A plots were also generated for the same level of experience observer 

(observer B). One sample T-test results indicated that N.On.Fg and OPD(F) mean 

differences were statistically significant (p < 0.010), and thus, these variables were 

excluded from further analysis. Test of normality indicated that all variables were 

normally distributed except for On.Ar (S-W p < 0.05). For N.On, the repeatability 

coefficient was ± 14.92 with a mean difference of -2.7 (p = 0.15). N.On.Tt produced 

a coefficient of repeatability corresponding to ± 44.98 and a mean difference of 8.7 

(p = 0.09). OPD(I) mean difference was reported to be -0.07 (p = 0.11) and the 

repeatability coefficient was ± 0.38. OPD had a mean difference of 0.61 (p = 0.07) 

and a coefficient of repeatability of ± 2.88. The variables related to rib area 

measurements produced the following mean differences and coefficients of 

repeatability: Ct.Ar: 0.14 (p = 0.08), ± 0.72; Tt.Ar: 0.11 (p = 0.18), ± 0.73; Es.Ar: -

0.032 (p = 0.65), ± 0.62; and Ct.Ar/Tt.Ar: 0.002 (p = 0.21), ± 0.01, respectively. 

LnOn.Ar obtained a mean difference of -0.002 (p = 0.92) with a coefficient of 

repeatability of ± 0.18, and On.Pm presented a mean difference of -0.003 (p = 0.42) 

with ± 0.029 coefficient of repeatability. LnOn.Cr produced a mean difference of 

0.007 with a coefficient of repeatability of ± 0.05 (p = 0.16). 
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Figure 5.3 presents the B&A plot for OPD differences between observations 

against OPD mean differences. All values fall within the upper and lower limits of 

agreement and coefficient of repeatability. Examination of the plots suggests no 

proportional bias as all the cases are randomly distributed above and below the 

mean difference line. The remaining B&A plots for intra-observer error can be found 

in Appendix B.1. 

 
Figure 5.3 B&A plot (OPD) same level of experience observer: limits of agreement 

represented by the solid line, coefficient of repeatability by the dashed line, and mean 

difference by the dotted line. 

In order to examine whether intra and inter-observer error has an impact on 

age estimation methods, the values obtained from each observation were inserted 

into Stout and Paine´s aging formula (1992) (see Table 4.6 in previous chapter). 

Age estimates for each OPD score were calculated and the mean differences 

between age estimates tested for significance using paired T-test or Wilcoxon Test. 

None of the estimated ages were statistically significant (p < 0.05) indicating that the 

reported differences between observations did not have an impact on the age 

estimates. A final test was performed to clarify if other parameters apart from OPD 

would imply potential differences in the estimated ages. The values obtained for 

OPD, On.Ar and Ct.Ar/Tt.Ar were inserted into the Cho et al. (2002) unknown 

ethnicity formula and into Goliath et al.´s (2016) formula (refer to Table 4.6). Neither 

intra- nor inter-observer errors seemed to affect the age estimates, which were not 

statistically significantly different (p < 0.05).   
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5.2. Pilot study: sampling error  

A single composite parameter, OPD, was assessed on six cross-sections from 

six Cretan rib samples (6 sections per rib, N = 36). Two age estimation formulae 

(Stout and Paine (1992) Ln_Age= 2.343 + 0.05087(OPD); Stout et al. (1994) Age = 

18.389 - 0.731(OPD) + 0.110(OPD)²) were applied. The main purpose of this test 

does not relate to the inaccuracy or bias of the methods, that matter will be 

examined in the next section. Instead, it aims to explore the performance of the six 

different histological sections within a rib to test the effect of sampling sites on the 

OPD values and on the individuals´ estimated ages. The demographics for this sub-

sample included an age range of 19-58 years and all female individuals (refer to 

Table 4.2).  

5.2.1. Intra and inter-costal histological variables differences 

N.On.Tt descriptive statistics for the intra-costal data are presented in Table 

5.3. In comparing the number of secondary osteons counted by segment within the 

same rib, the 27-year-old individual exhibited the maximum difference of 171 

secondary osteons among the intra-shaft sections. A minimum difference of 37 

secondary osteons among intra-shaft rib sections was observed in a 46-year-old.   

 Taking into account the variability of the measured values –standard 

deviation from the mean (SD), range and variance – the highest variability was 

produced for the youngest individual while the lowest variability values were 

observed for the 46-year-old individual. A fairly similar interquartile range was 

observed for all the ribs with the exception of the youngest individual and the 46-

year-old individual that presented the highest and the lowest interquartile range, 

respectively. There seemed to be a trend on N.On.Tt reported by each segment. For 

half of the sample the lowest N.On.Tt was produced for the sternal segment while 

the highest N.On.Tt was usually seen in the vertebral segment. The highest 

variation according to the CV was produced for the two youngest individuals.  

Descriptive statistics for Ct.Ar are presented in Table 5.4. A decrease in Ct.Ar 

with increasing age was observed. The maximum difference for Ct.Ar between the 

six sections within the same rib was evident in the youngest individual (with the 

highest SD) and the minimum difference was observed in the oldest individual 

(producing the lowest SD): note that variability for the remaining individuals was 

fairly similar. The highest interquartile range was evident in the 29-year-old 
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individual and the lowest interquartile range in the oldest individual.  A pattern was 

observed for the Ct.Ar by segments with the smallest area given by the sternal 

segments while the largest areas were mostly produced by the vertebral segments. 

The highest and lowest CV were seen in the youngest and the oldest individuals, 

respectively, with the other samples showing similar values. 

Descriptive statistics for OPD values are presented in Table 5.5. There was an 

observed trend with increasing OPD as age increased. The difference between OPD 

maximum and minimum values for all the six segments within the same rib ranged 

from a minimum of 2.11 to a maximum of 6.22 corresponding to the 29-year- old 

individual and the 58-year-old individual, respectively. The highest SD, range and 

variance were observed for the oldest individual while the lowest variability was 

seen in the 29-year-old individual. Interquartile ranges varied from a minimum of 

1.15 for the 29-year-old individual to a maximum of 2.96 for the 46-year-old 

individual. OPD lowest and highest values within the same rib did not seem to have 

a pattern related to sampling area, at least for the small sample tested here. When 

the average of the two sections extracted from the same segment was computed, 

the two youngest individuals produced the highest OPD values from the vertebral 

segment, the two middle age individuals from the middle segment and the 

individuals that were 46 and 58 years of age from the sternal and middle segments, 

respectively. Half of the sample produced the lowest OPD from the sternal segment 

while the remaining values appeared to be random. CV values suggested than the 

two youngest individuals obtained the highest variability within their OPD values with 

the remaining individuals reporting similar values.  
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Table 5.3 Descriptive statistics and variability values for N.On.Tt on the six ribs. 

Known Age Min Max Mean SE SD Range Variance 
Interquartile 

range 
Lowest 

Segment 
Highest 
Segment 

CV 

19 100 269 160.17 27.52 67.43 169 4546.10 122 M1 V1 0.42 

27 51 222 152.67 23.93 58.62 171 3436.66 82 S1 V2 0.38 

29 125 235 181.67 18.71 45.84 110 2101.46 91 S1 V2 0.25 

35 87 168 136.67 14.84 36.37 81 1322.66 72 S2 V1 0.27 

46 159 196 179 7.18 17.61 37 310 36 M1 S1 0.10 

58 128 245 184.67 17.82 43.65 117 1905.46 82 V1 M2 0.24 

Min=minimum, Max=maximum, SE=standard error of the mean, SD=standard deviation, S=sternal, M=middle, V=vertebral, 1=1st 
section and 2=2nd section (extracted from vertebral to sternal), CV= coefficient of variation 

Table 5.4 Descriptive statistics and variability values for Ct.Ar on the six ribs. 

Known 
Age 

Min Max Mean SE SD Range Variance 
Interquartile 

range 
Lowest 

Segment 
Highest 
Segment 

CV 

19 11.45 34.84 23.57 3.13 7.68 23.39 59.01 10.51 S2 V1 0.33 

27 19.69 31.79 26.36 2.18 5.35 12.10 28.69 11.13 S1 V2 0.20 

29 21.28 34.88 30.22 2.41 5.91 13.60 35.03 11.21 S1 M1 0.20 

35 14.63 25.68 18.96 1.66 4.07 11.05 16.62 6.95 S1 V1 0.22 

46 15.70 24.99 20.29 1.67 4.09 9.29 16.78 8.63 S1 V2 0.20 

58 11.97 17.21 15.21 0.78 1.92 5.24 3.71 3.28 S2 V1 0.13 

Min=minimum, Max=maximum, SE=standard error of the mean, SD=standard deviation, S=sternal, M=middle, V=vertebral, 1=1st 

section and 2=2nd section (extracted from vertebral to sternal); CV= coefficient of variation



www.manaraa.com

 

 
 

132 

Table 5.5 Descriptive statistics and variability values for OPD on the six ribs. 

Known 
Age 

Min Max Mean SE SD Range Variance 
Interquartile 

range 
Lowest 

Segment 
Highest 
Segment 

CV 

19 4.07 8.99 6.89 0.71 1.73 4.92 3.01 2.70 M1 S2 0.25 

27 2.58 7.33 5.68 0.73 1.77 4.43 3.14 2.92 S1 S2 0.31 

29 4.85 6.95 5.99 0.29 0.73 2.11 0.53 1.15 V1 V2 0.12 

35 5.75 8.74 7.17 0.45 1.10 2.96 1.21 1.85 S2 M1 0.15 

46 7.18 11.01 9.06 0.66 1.61 3.83 2.58 2.96 M1 S1 0.18 

58 8.38 14.6 12.17 0.84 2.07 6.22 4.29 2.53 V2 M1 0.17 

Min=minimum, Max=maximum, SE=standard error of the mean, SD=standard deviation, S=sternal, M=middle, V=vertebral, 1=1st 
section and 2=2nd section (extracted from vertebral to sternal); CV= coefficient of variation 
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5.2.2. Age estimates differences between sampling areas 

Two different formulae – Stout and Paine (1992) and Stout et al. (1994) – 

were used to explore differences in the level of accuracy related to intra-costal 

variation (comparison of estimated ages produced by the six thin-sections along the 

length of the rib). OPD values from each section were inserted into each formula 

and estimated ages were calculated (García-Donas et al., 2016).  

A summary of the accuracy levels based on mean error and mean percentage 

error rates are presented in Table 5.6. When Stout and Paine (1992) formula was 

applied for aging the specimens, the youngest individual (19 years old) produced the 

lowest mean error ranging from -2.54 to -6.19 with a percentage mean error ranging 

from -13.38 to -32.57. For the oldest individual included in the study sample (58 

years old), the error ranged from -36.10 to -42.06 producing error percentages from 

-65.10 to -72.52. Both mean errors and mean percentage errors increased gradually 

as individuals´ age increased. 

Overall, the mean error and mean percentage errors obtained by the 

application of Stout et al. formula (1994) were slightly lower than the ones obtained 

from Stout and Paine formula (1992) (Table 5.6). The youngest individual estimated 

ages produced errors ranging from -1.17 to 1.72 with percentage errors varying from 

-1.66 to 9.06. The oldest individual in the sample obtained estimates ranging from -

26.81 to -30.20 errors and percentage errors from -46.23 to -65.56. 

As seen in Table 5.6, the differences between the lowest and the highest 

errors produced by the six sampling areas for each individual did not show a major 

difference when compare to the differences between estimated age and known age.  

The error range for the entire sample was from 4 to 38 years when using the Stout 

and Paine (1992) equation while the error ranged from a minimum of 0.15 to a 

maximum of 32 while using Stout et al. (1994) equation.  

In summary, the absolute maximum difference between the errors obtained by 

the six thin-sections within the same rib did not exceed 6 years for Stout and Paine 

(1992), and a maximum error difference of 11 years when using Stout et al. (1994) 

(both for the oldest individual in the sample) (Table 5.6).  Some variation was 

observed in relation to which rib sampling area performed better according to the 

closest estimated age to known age. For both methods, the second sternal sections 

were more accurate for the two youngest individuals, while for the middle age 
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individuals (29 and 35 years old) second vertebral and first middle shaft sections 

produced the closest age estimations, respectively. The two oldest specimens 

produced the closest estimated ages through first sternal and first middle sections.  

Table 5.6 Mean error, mean percentage error and maximum difference between 

errors and percentage errors for the six sections within the same rib. 

 

Stout and Paine (1992) Stout et al. (1994) 

 

Mean 
Error 

(years) 

Mean 
error  % 

ABS 
Max. 

error diff. 
(years) 

Mean 
Error 

(years) 

Mean 
error  % 

ABS Max. 
error 

diff.(years) 

 19 y.o. -4.17 -21.95 3.65 -0.15 -0.8 1.46 

27 y.o. -13.05 -48.33 3.24 -8.92 -33.05 1.71 

29 y.o. -14.87 -51.28 1.09 -11 -37.92 1.22 

35 y.o. -19.99 -57.1 1.81 -16.09 -45.97 2.56 

46 y.o. -29.45 -64.01 3.23 -24.97 -54.29 4.87 

58 y.o. -38.64 -66.63 5.96 -31.96 -55.11 11.2 

 

*Mean Error= Real Age-Estimated Age; % Error rate=100*Mean Error/Known Age; Abs. Max. 

diff.: absolute maximum difference; y.o= years old. 

Table 5.7 provides a summary of the measurements of variability obtained by 

the estimated ages by applying the two formulae. For Stout and Paine (1992) the 

highest range, SD and interquartile range were found for the oldest individual. The 

same specimen produced the highest variability values for Stout et al. (1994) 

showing a noticeable difference in comparison with the rest of the specimens 

considering all values as an aggregate. This difference may be due to the estimated 

ages produced by this individual as the lowest age is 20 years old (second vertebral 

thin-section) while the highest estimate was 31 years old (first middle thin section). 

The CV obtained for estimated ages on each specimen performed similarly 

indicating that estimated ages produced by the six thin-sections along the length of 

the rib did not vary dramatically. 
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Table 5.7 Descriptive statistics and variability values for estimated ages using Stout 

and Paine (1992) and Stout et al. (1994) age estimation equations. 

 

Known 
Age 

Min Max Mean  SE SD Range Variance 
Interquartile         

range 
CV 

S
to

u
t 

a
n

d
 P

a
in

e
  
 

 (
1

9
9

2
) 

19 12.81 16.46 14.83 0.52 1.28 3.65 1.64 2.01 0.09 

27 11.88 15.12 13.95 0.49 1.2 3.24 1.46 2.04 0.09 

29 13.33 14.83 14.13 0.21 0.52 1.5 0.27 0.82 0.04 

35 13.98 16.25 15.02 0.34 0.84 2.27 0.72 1.42 0.06 

46 15 18.24 16.55 0.55 1.35 3.24 1.84 2.49 0.08 

58 15.94 21.9 19.35 0.8 1.96 5.96 3.84 2.46 0.10 

S
to

u
t 

e
t 
a

l.
  

(1
9

9
4

) 

19 17.24 20.72 18.95 0.5 1.23 3.48 1.51 1.98 0.07 

27 17.23 18.94 18.1 0.27 0.67 1.71 0.46 1.38 0.04 

29 17.43 18.63 18.01 0.17 0.42 1.2 0.17 0.66 0.02 

35 17.84 20.41 18.91 0.39 0.96 2.57 0.95 1.59 0.05 

46 18.81 23.68 21.03 0.83 2.03 4.87 4.14 3.72 0.10 

58 19.89 31.19 26.3 1.49 3.66 11.21 13.41 4.76 0.14 

Min=minimum, Max=maximum, SE=standard error of the mean, SD=standard deviation, CV = 

coefficient of variation 

5.3 Validation study: rib histological methods  

In the previous section, under- or over-estimation of the individuals´ age by the 

two aging equations has been ignored. In this section, the entire sample (N = 88) 

was tested against four existing methodologies (Stout and Paine, 1992; Stout et al., 

1994; Cho et al., 2002; Goliath et al., 2016) to determine the performance of the 

aging techniques on the Mediterranean sample (Table 4.6). Cho et al. (2002) 

method includes three different formulae developed for specific ancestry groups 

(European, Unknown ethnicity and African-American).   

Firstly, the entire dataset was used to explore the overall accuracy rates of the 

four methods. A test of normality (Shapiro-Wilk (SW)) was run on the entire sample 

in order to explore the distribution of the data. S-W assessment indicated that the 

age distribution fitted the theoretical normal distribution (SW = 0.98, df = 88, p = 

0.25).  Pearson´s Correlations showed a significant positive correlation for all the 

age estimates and known age, at p-value < 0.01 (Stout and Paine (1992), r = 0.66; 

Stout et al. (1994), r = 0.67; Cho et al. (2002): European-American r = 0.75, 

Unknown Ethnicity r = 0.76, African-American r = 0.70; Goliath et al. (2016), r = 

0.67).  Descriptive statistics are shown in Table 5.8. 
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Table 5.8 Descriptive statistics for the entire sample and age estimates obtained using 

the four methods. Note that the age estimates for Stout et al. (1994) are significantly 

skewed. 

N=88 Min Max Mean SE SD Skewness 
Z_ 

Skewness 
Kurtosis 

Z_ 

Kurtosis 

Known Age 19 100 60.33 1.91 17.89 -0.21 -0.82 0.04 0.08 

Stout and Paine 
(1992) 

13.03 33.68 22.47 0.46 4.30 0.35 1.30 0.07 0.14 

Stout et al. (1994) 17.32 71.87 35.39 1.27 11.95 0.96 3.70 0.81 1.60 

C
h

o
 e

t 
a
l.
 

(2
0

0
2

) 

European-
American 

7.60 66.20 36.63 1.43 13.37 -0.07 -0.28 -0.76 -1.51 

Unknown 
Ethnicity 

11.51 61.01 36.23 1.15 10.81 -0.05 -0.18 -0.64 -1.25 

African-
American 

15.29 54.62 37.92 0.97 9.08 -0.43 -1.60 -0.46 -0.91 

Goliath 2016 35.05 86.42 65.94 1.36 12.76 -0.51 -1.99 -0.43 -0.85 

Min: minimum age, Max=maximum age, SE=standard error, SD=standard deviation. 

As recommended by Lovejoy et al. (1985b), inaccuracy and bias were 

calculated to test the performance of each method. The sample was divided by age 

cohorts taking into account the number of individuals for each age group.  Moreover, 

the entire sample was divided into under and over 60 years of age.  This was done 

to consider the idea that OPD asymptote occurs at this age (Robling and Stout, 

2008).  As observed in Table 5.9, there was a general underestimation trend for all 

methods except for Goliath et al. (2016). When the sample was divided into four age 

categories, the formulae developed by Stout and Paine (1992), Stout et al. (1994) 

and Cho et al. (2002) showed a noticeable increase in inaccuracy for individuals 

over the age of 40.  The highest values of inaccuracy were seen for the individuals 

over the age of 80.  The Stout and Paine (1992) age estimation equation produced 

the highest error values. The opposite trend was observed in the application of 

Goliath et al. (2016) formula for which the highest inaccuracy and bias values were 

observed in the youngest group (20-39 years old) while the lowest were evident in 

the 60-79 years age cohort. The only underestimation observed by using this 

method corresponds to the over 80 years of age group.  

As seen in Table 5.9, there is an increase in inaccuracy and bias values when 

the sample is divided into under and over 60 years old for which the values almost 

double between the young and the old age cohorts. This pattern was observed in 

the application of Stout and Paine (1992), Stout et al. (1994) and all three formulae 

developed by Cho et al. (2002) suggesting a trend of increasing inaccuracy and bias 
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in older age categories. Goliath et al. (2016) followed the opposite pattern with 

decreasing inaccuracy and bias values with increasing age. For the entire sample, 

Stout and Paine (1992) formula produced values that surpassed Stout et al. (1994) 

and Cho et al. (2002) methods in more than 10 years of difference being the least 

accurate method. From the three formulae applied from Cho et al. (2002), the 

African-American ancestry one showed the lowest inaccuracy and bias values 

although a similar performance was observed by the three age predicting equations.  

Overall, Stout et al. (1994) and Cho et al. (2002) performed similarly. Comparing all 

four methods applied, Goliath et al. (2016) was the method that most accurately 

predicted age in the sample under study.  
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Table 5.9 Inaccuracy and bias values for the entire sample by age cohorts. 

      
Cho et al. (2002) 

  

  

Stout and Paine 
(1992) 

Stout et al. (1994) European formula Unknown formula 
African-American 

formula 
Goliath et al. (2016) 

N
n 

Age  
range 

Inaccuracy Bias 
Inaccurac

y 
Bias 

Inaccurac
y 

Bias 
Inaccurac

y 
Bias 

Inaccurac
y 

Bias Inaccuracy Bias 

11 19-39 10.38 -10.38 6.19 -3.73 10.70 -5.90 8.72 -3.94 10.34 -0.36 22.52 22.52 

28 40-59 31.22 -31.22 22.72 
-

22.72 
22.87 

-
22.87 

21.68 -21.68 18.72 -18.72 11.37 9.14 

36 60-79 42.73 -42.73 27.17 
-

27.17 
24.41 

-
24.41 

25.85 -25.85 24.86 -24.86 6.87 4.05 

13 80 61.94 -61.94 41.48 
-

41.48 
38.58 

-
38.58 

41.49 -41.49 42.24 -42.24 12.62 
-

12.01 

 

39 
under 

60 
25.34 -25.34 18.06 

-
17.36 

19.44 
-

23.23 
18.02 -16.68 16.35 -13.54 14.52 12.91 

49 over 60 47.83 -47.83 30.97 
-

30.97 
28.17 

-
28.17 

30.00 -30.00 29.47 -29.47 8.40 -0.21 

 

88 ALL 37.86 -37.86 25.24 
-

24.94 
24.30 

-
23.70 

24.69 -24.10 23.66 -22.41 11.11 5.61 
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The entire sample was separated by sex to examine whether there were 

differences between the estimated ages obtained for males and females. The 

results for the normality test showed that both sexes age distributions appeared to 

be normally distributed (Males, SW = 0.96, df = 40, p = 0.22; Females SW = 0.97, df 

= 48, p = 0.42). The estimated ages also corresponded to a normal distribution (S-W 

p-value > 0.05). Descriptive statistics for estimated ages by sex are presented in 

Table 5.10. The closest mean estimated age to mean known age for both males and 

females was produced using Goliath et al. (2016); for the remaining methods, the 

lowest mean estimated age was provided by Stout and Paine (1992) while Stout et 

al. (1994) and Cho et al. (2002) produced very similar inaccuracy and bias results. 

Table 5.11 shows Pearson´s correlation coefficients between estimated age and 

known age for males and females for all the formulae. Correlations were slightly 

stronger for males than for females for Stout and Paine (1992) and Stout et al. 

(1994) while the inverse was observed for the remaining formulae (especially for 

Cho et al. (2002) African-American formula). 

Table 5.10 Descriptive statistics for estimated age using the four methods for males 

and females. 

  
Min Max Mean SE SD 

Skew- 
ness 

Z_ 

Skewness 
Kurtosis 

Z_ 

Kurtosis 

M
A

L
E

S
 n

=
4
0
 

Known Age 20 89 60.1 2.63 16.53 -0.58 -1.55 0.19 0.27 

Stout and Paine 
(1992) 

15.36 32.80 22.46 0.66 4.18 0.97 2.60 0.37 0.50 

Stout et al. 
(1994) 

19.23 68.52 35.20 1.95 12.38 1.33 3.56 1.13 1.53 

C
h
o

 e
t 

a
l.
 

(2
0

0
2

) 

European-
American 

12.29 57.31 36.17 1.99 12.6 -0.1 -0.27 -0.76 -1.03 

Unknown 
Ethnicity 

16.27 54.67 35.93 1.60 10.14 0.07 0.18 -0.68 -0.92 

African-
American 

16.82 54.13 38.85 1.31 8.33 -0.35 -0.94 0.01 0,01 

Goliath et al. 
(2016) 

35.05 86.42 67.63 2.05 12.97 -0.70 -1.88 -0.02 -0.03 

F
E

M
A

L
E

S
 n

=
4

8
 

Known Age 19 100 60.52 2.75 19.11 -0.02 -0.05 -0.03 -0.04 

Stout and Paine 
(1992) 

13.03 33.68 22.46 0.64 4.43 -0.08 -0.20 -0.01 -0.02 

Stout et al. 
(1994) 

17.32 71.87 35.54 1.68 11.70 0.64 1.72 0.78 1.06 

C
h
o

 e
t 

a
l.
 

(2
0

0
2

) 

European-
American 

7.60 66.20 37.01 2.03 14.09 -0.67 -1.79 -0.78 -1.06 

Unknown 
Ethnicity 

11.51 61.01 36.48 1.64 11.42 -0.13 -0.35 -0.61 -0.83 

African-
American 

15.29 54.62 37.14 1.39 9.67 -0.41 -1.10 -0.77 -1.05 

Goliath et al. 
(2016) 

35.64 84.56 64.51 1.80 12.52 -0.40 -1.07 -0.57 -0.78 

Min: minimum, Max=maximum, SE=standard error, SD=standard deviation. 
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Table 5.11 Pearson´s correlations between age and estimated age for males and 

females. 

   

Cho et al. (2002) 

 

 

Stout and 
Paine   (1992) 

Stout et al. 
(1994) 

European-
American 

Unknown 
Ethnicity 

African-
American 

Goliath et 
al. (2016) 

MALE 0.71** 0.68** 0.72** 0.74** 0.58** 0.67** 

FEMALE 0.69** 0.67** 0.77** 0.77** 0.79** 0.68** 

** p-value significant at 0.01 level 

Table 5.12 shows the results for both sexes with the sample divided in four 

age cohorts, under and over 60 years old, and the entire sex sub-samples 

separately. The pattern seen for the entire sample was also observed for the two 

sexes, with increasing inaccuracy and bias values towards increasing age for all 

methods except for Goliath et al. (2016). Stout and Paine formula (1992) produced 

the highest inaccuracy and bias values and Stout et al. (1994) and Cho et al. (2002) 

performed similarly for the two sub-samples. When divided into age cohorts, 

females over 80 years of age produced higher inaccuracy and bias values than their 

male counterparts for all methods. This trend was marked for Goliath et al. (2016).
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Table 5.12 Inaccuracy and bias values for the entire sample and age cohorts divided by sexes. 

       
Cho et al. (2002) 

  

   
Stout and Paine 

(1992) 
Stout et al. (1994) European Formula Unknown Formula 

African-American 
Formula 

Goliath et al. (2016) 

 
N 

Age 
range 

Inaccuracy Bias Inaccuracy Bias Inaccuracy Bias Inaccuracy Bias Inaccuracy Bias Inaccuracy Bias 

M
A

L
E

S
 

 (
n

=
4

0
) 

5 20-39 10.39 -10.39 6.97 -4.43 13.17 -6.86 10.57 -4.46 12.59 2.14 22.24 22.24 

12 40-59 32.43 -32.43 24.79 -24.79 23.40 -23.40 22.48 -22.48 17.13 -17.13 12.92 9.98 

17 60-79 42.62 -42.62 27.39 -27.39 25.42 -25.42 26.55 -26.55 24.93 -24.93 7.46 6.58 

6 80 56.61 -56.61 35.08 -35.08 34.99 -34.99 37.24 -37.24 38.53 -38.53 8.24 -6.91 

 
17 < 60 25.95 -25.95 19.55 -18.80 20.39 -18.54 18.97 -17.18 15.80 -11.47 15.66 13.59 

23 > 60 46.27 -46.27 29.40 -29.40 27.92 -27.92 29.34 -29.34 28.48 -28.48 7.66 3.06 

 
40 ALL 37.63 -37.63 25.21 -24.89 24.72 -23.93 24.93 -24.17 23.09 -21.25 11.06 7.54 

F
E

M
A

L
E

S
 

 (
n

=
4

8
) 

6 19-39 10.37 -10.37 5.54 -3.14 8.65 -5.11 7.17 -3.51 8.47 -2.45 22.76 22.76 

16 40-59 30.31 -30.31 21.16 -21.16 22.47 -22.47 21.08 -21.08 19.90 -19.90 10.21 8.50 

19 60-79 42.84 -42.84 26.98 -26.98 23.51 -23.51 25.23 -25.23 24.80 -24.80 6.35 1.79 

7 80 66.51 -66.51 46.96 -46.96 41.65 -41.65 45.13 -45.13 45.41 -45.41 16.38 -16.38 

 
22 < 60 24.87 -24.87 16.90 -16.25 18.70 -17.74 17.28 -16.29 16.78 -15.14 13.63 12.39 

26 > 60 49.21 -49.21 32.36 -32.36 28.40 -28.40 30.59 -30.59 30.35 -30.35 9.05 -3.10 

 
48 ALL 38.05 -38.05 25.27 -24.97 23.95 -23.51 24.49 -24.04 24.13 -23.38 11.15 4.00 
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The entire data set was divided into the two samples, Cretans and Cypriots, to 

explore whether there were differences in estimated ages between the two groups. 

The test of normality indicated that the age distributions for each group were close 

to the theoretical normal distribution (Cretans, SW = 0.97, df = 41, p = 0.48; Cypriots 

SW = 0.96, df = 47, p = 0.11).  All estimated ages produced for Cretans and 

Cypriots by each formulae approximated a normal distribution except for Stout et al. 

(1994) (Cretans, SW = 0.97, df = 41, p = 0.005; Cypriots SW = 0.94, df = 47, p = 

0.019). Descriptive statistics are presented in Table 5.13. Comparing the mean 

known age and the mean estimated age produced by each method on each sample 

it can be seen that Cypriots obtained slightly higher estimated mean age than the 

Cretans for all the formulae. Overall, the two samples performed similarly with the 

closest mean estimated age to mean known age produced by Goliath et al. (2016). 

Correlations between estimated ages and known age indicated a stronger 

correlation for Cypriots than Cretans for all methods except for Goliath et al. (2016) 

that performed similarly (Table 5.14).  

Table 5.15 presents inaccuracy and bias values for the Cretan and Cypriot 

samples. Similar values for the four age categories between the two groups were 

observed for Stout and Paine (1992), Stout et al. (1994), Cho et al. (2002) and 

Goliath et al. (2016) with slightly higher inaccuracy and bias values for the Cypriot 

sample. It must be noted that even if sample sizes were uneven, similar results as 

the ones obtained for the entire data set and separated sexes were produced. 

Again, Stout and Paine (1992) method showed the highest bias and inaccuracy 

values. When all individuals included in each sample were compared, Cypriots 

showed slightly higher inaccuracy and bias values than the Cretans. Among the 

three formulae of Cho et al. (2002), the African-American formula performed slightly 

better than the others did although the difference was very small.  
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Table 5.13 Descriptive statistics for estimated age using the four methods for Cretans 

and Cypriots. 

  
Min. Max. Mean SE SD 

Skew- 
ness 

Z_ 

Skewness 
Kurto-

sis 
Z_ 

Kurtosis 
C

R
E

T
E

 n
=

4
0
 

Known Age 19 98 57.49 3.3 21.17 -0.07 -0.20 -0.82 -1.13 

Stout and Paine 
(1992) 

13.03 32.8 21.57 0.67 4.32 0.39 1.05 0.39 0.53 

Stout et al. (1994) 17.32 68.52 33.10 1.79 11.46 1.16 3.15 1.50 2.07 

C
h

o
 e

t 
a
l.
 

(2
0

0
2

) 

European-
American 

7.60 59.12 36.49 2.21 14.16 -0.28 -0.75 -0.86 -1.19 

Unknown 
Ethnicity 

11.51 54.67 35.68 1.78 11.42 -0.24 -0.65 -0.69 -0.95 

African-
American 

15.29 51.81 37.20 1.48 9.53 -0.70 -1.88 -0.37 -0.50 

Goliath et al. (2016) 35.05 84.99 63.51 2.11 13.54 -0.39 -1.06 -0.84 -1.15 

C
Y

P
R

U
S

 n
=

4
8
 

Known Age 20 100 62.81 2.07 14.2 0.06 0.18 1.57 2.30 

Stout and Paine 
(1992) 

15.66 33.68 23.25 0.61 4.16 0.41 1.19 -0.08 -0.11 

Stout et al. (1994) 19.61 71.87 37.39 1.76 12.11 0.88 2.54 0.70 1.03 

C
h
o

 e
t 

a
l.
 

(2
0

0
2

) 

European-
American 

15.9 66.2 36.75 1.86 12.79 0.17 0.49 -0.66 -0.97 

Unknown 
Ethnicity 

19.8 61.01 36.71 1.5 10.33 0.21 0.60 -0.66 -0.97 

African-
American 

19.46 54.62 38.55 1.27 8.71 -0.10 -0.29 -0.79 -1.16 

Goliath et al. (2016) 35.64 86.42 68.05 1.72 11.76 -0.56 -1.62 0.04 0.06 

Min: minimum, Max=maximum, SE=standard error, SD=standard deviation 

Table 5.14 Pearson´s correlations between known age and estimated age for Cretans 

and Cypriots. 

   

Cho et al. (2002) 

 

 

Stout and 
Paine   
(1992) 

Stout et al. 
(1994) 

European-
American 

Unknown 
Ethnicity 

African-
American 

Goliath et 
al. (2016) 

CRETE 0.67** 0.67** 0.74** 0.74** 0.64** 0.68** 

CYPRUS 0.74** 0.74** 0.80** 0.80** 0.79** 0.64** 

 ** p-value significant at .01 level; Stout et al. (1994) refers to Spearman´s correlations. 
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Table 5.15 Inaccuracy and bias values for the entire sample and age cohorts divided by samples. 

       
Cho et al. (2002) 

  

   

Stout and Paine 
(1992) 

Stout et al. (1994) European Formula Unknown Formula 
African-American 

Formula 
Goliath et al. (2016) 

 

N 
Age 

range 
Inaccuracy Bias  Inaccuracy Bias  Inaccuracy Bias  Inaccuracy Bias  Inaccuracy Bias  Inaccuracy Bias  

C
R

E
T

E
  

(n
=

4
1

) 

10 19-39 11.19 -11.19 6.51 -4.39 11.75 -6.52 9.29 -4.63 10.71 -1.06 21.51 21.51 

11 40-59 30.94 -30.94 22.08 -22.08 19.65 -19.65 19.41 -19.41 15.93 -15.93 10.65 8.78 

12 60-79 43.42 -43.42 29.14 -29.14 21.07 -21.07 23.96 -23.96 24.48 -24.48 4.77 2.36 

8 80 62.44 -62.44 45.45 -45.45 40.83 -40.83 43.32 -43.32 44.03 -44.03 12.64 -11.65 

 
21 

under 
60 

21.54 -21.54 14.67 -13.66 15.89 -13.40 14.59 -12.38 13.45 -8.85 15.82 14.84 

20 
over 
60 

51.02 -51.02 35.66 -35.66 28.97 -28.97 31.70 -31.70 32.30 -32.30 7.92 -3.24 

 
41 ALL 35.92 -35.92 24.91 -24.39 22.27 -21.00 22.94 -21.80 22.64 -20.29 11.97 6.02 

C
Y

P
R

U
S

 

 (
n

=
4

7
) 

1 20-39 2.26 -2.26 2.94 2.94 0.25 0.25 2.94 2.94 6.64 6.64 32.67 32.67 

17 40-59 31.40 -31.40 23.13 -23.13 24.95 -24.95 23.14 -23.14 20.52 -20.52 11.84 9.36 

24 60-79 42.39 -42.39 26.19 -26.19 26.09 -26.09 26.80 -26.80 25.05 -25.05 7.92 4.90 

5 80 61.16 -61.16 35.12 -35.12 34.97 -34.97 38.56 -38.56 39.37 -39.37 12.59 -12.59 

 
18 

under 
60 

29.78 -29.78 22.01 -21.68 23.58 -23.55 22.02 -21.69 19.75 -19.01 12.99 10.66 

29 
over 
60 

45.63 -45.63 27.73 -27.73 27.62 -27.62 28.83 -28.83 27.52 -27.52 8.72 1.88 

 
47 ALL 39.56 -39.56 25.54 -25.41 26.07 -26.06 26.22 -26.10 24.54 -24.26 10.36 5.25 
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In summary, Stout and Paine (1992), Stout et al. (1994) and Cho et al. (2002) 

aging formulae produced high inaccuracy and bias values, with a significant 

underestimation for the sample under study, especially for the over 50-60 years of 

age individuals. Goliath et al. (2016) formula seemed to estimate age more 

accurately for old individuals than for young ones. Further steps on the validation 

study were carried out only on the entire data set based on the similar inaccuracy 

and bias trend reported for entire sample and for the sub-samples. Next, Wilcoxon 

signed rank test was performed to verify whether the values for known age differed 

significantly from the estimated age for the entire sample and the sample divided 

into age cohorts (Table 5.16).  

Due to the high inaccuracy and bias values, Stout and Paine (1992) 

underestimated age in all age cohorts with p-values less than the 0.05 threshold 

(Table 5.16). Only individuals under 40 years of age showed non-statistically 

significant differences between estimated age and known age for Stout et al. (1994) 

and for all the three formulae from Cho et al. (2002). When the sample was divided 

into 20 year age cohorts, Goliath et al. (2016) method produced estimated ages that 

were statistically significantly different from zero for all the sub-groups. However, 

this method produced estimated ages not statistically significantly different from 

known age for over 60 years of age individuals suggesting that it can accurately 

estimate age in old specimens. 



www.manaraa.com

 

 

146 

Table 5.16 Wilcoxon paired test between known age and estimated age. 

      

Cho et al. (2002) 

  

  

Stout and 
Paine (1992) 

Stout et al. 
(1994) 

European 
formula 

Unknown 
formula 

African-
American 
formula 

Goliath et al. 
(2016) 

N Age range Z p-value  Z p-value  Z p-value  Z p-value  Z p-value  Z p-value  

11 20-39 -2.93 0.003 -1.33 0.18 -1.51 0.13 -1.24 0.21 -0.09 0.93 -2.93 < 0.001 

28 40-59 -2.93 <0.001 -2.93 < 0.001 -2.93 < 0.001 -2.93 < 0.001 -2.93 < 0.001 -3.69 < 0.001 

36 60-79 -5.23 <0.001 -5.23 < 0.001 -5.23 < 0.001 -5.23 < 0.001 -5.23 < 0.001 -5.23 < 0.001 

13 80 -3.18 <0.001 -3.18 < 0.001 -3.18 < 0.001 -3.18 < 0.001 -3.18 < 0.001 -3.18 < 0.001 

 
39 under 60 -5.44 <0.001 -5.2 < 0.001 -5.17 < 0.001 -5.17 < 0.001 -4.7 < 0.001 -4.77 < 0.001 

49 over 60 -6.09 <0.001 -6.09 < 0.001 -6.09 < 0.001 -6.09 < 0.001 -6.09 < 0.001 -0.41 0.68 

 
88 ALL -8.14 <0.001 -8.07 < 0.001 -8.06 < 0.001 -8.07 < 0.001 -7.92 < 0.001 -3.88 < 0.001 

 In bold non-statistically significant  
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In the final stage of the analysis, B&A analysis was used to assess the 

agreement interval produced by the estimated ages; only those age categories that 

presented non-statistically significant differences between estimated and known age 

were tested (Bland and Altman 1986; 1995). Mean differences, and upper and lower 

limits of agreement were calculated as described in section 4.2.4.3.  

For Stout et al. (1994) and Cho et al. (2002) methods, plots are not presented 

due to the low number of cases (n = 11).  A one sample T-test confirmed that the 

difference between estimated and know age was non-statistically significant from 

zero (p-value > 0.05). The upper and lower limits of agreement for the formula 

developed by Stout et al. (1994) ranged between 10.94 and -18.38 with a bias of -

3.72.  Cho et al. (2002) European formula had agreement levels of 17.7 and -27.7 

with a bias of -5.9.  Cho et al. (2002) unknown formula limits of agreement ranged 

from 15.3 and -23.3 with a bias of -3.9; and the African-American formula presented 

23.61 and -24.3 upper and lower limits of agreement with a bias of -0.36. All the 

cases fell within the limits of agreement calculated for each formula. Among these 

methods, Stout et al. (1994) produced the narrowest limits of agreement.  

Due to larger sample size, the over 60 years old age cohort was tested with 

the B&A plot to graphically examine the agreement between estimated and known 

age for Goliath et al. (2016) (n = 49). One sample t-test confirmed that the difference 

between scores was not statistically significant (p-value > 0.05). The upper and 

lower limits of agreement correspond to 21.52 and -21.93 (solid lines). Figure 5.4 

shows that only two cases fall outside the limits of agreement (4% of the total 

sample) with a bias of -0.21 (dotted line). The best-fit line (coloured line) indicates a 

general underestimation of individuals older than 75 years of age. 
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Figure 5.4  Difference in Goliath et al. (2016) estimated ages and known age against 

known age for the over 60 years old sub-sample set. 

5.4. Histological variables and age  

 Statistical analysis was performed to examine the relation between age and 

histological variables for the entire dataset, and for sexes and samples separately. 

5.4.1. Age and histological variables on the entire sample 

 Descriptive statistics for all variables on the entire sample are presented in 

Table 5.17. Those variables for which there was an indication of non-normal 

distribution are highlighted and the results accounted for further analyses. 

The age distribution for the entire sample is represented in Figure 5.5 (Mean 

age = 60.33, SD = 17.89). A normal shape distribution is observed in the histogram 

and confirmed by skewness and by the S-W test (skewness: -0.21, SE = 0.26; S-W 

= 0.98, df = 88, p = 0.25). 
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Figure 5.5 Age distribution histogram (top) and density plot (bottom) for the entire 

population. 

Histograms were generated to graphically examine the distribution of the raw 

and composite parameters used in this research. Note that only the histogram for 

OPD is shown in this section. The remaining histograms can be consulted in 

Appendix B.2. The distribution of all variables related to osteon frequency number 

did not pass the normality assumption with positively skewed distribution for N.On 

and N.On.Fg (Table 5.17). Secondary osteon frequency numbers were inconsistent 

with the bell-shaped curve as assessed by S-W test (p < 0.05). OPD(I) and OPD(F) 

values were consistent with normal distribution according to skewness and S-W 

statistics. S-W test and skewness value for OPD indicate normalcy which was 

corroborated through the examination of the histograms (Figure 5.6). Rib area 

parameters all provide statistically significant p-values (p < 0.05). Moreover, Ct.Ar, 

Tt.Ar and Es.Ar distribution showed positive skewness with excessive kurtosis for 

Es.Ar (3.53, SE = 0.51) (Table 5.17).  
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For secondary osteon measurements, only On.Cr presented S-W statistics 

lower than 0.05 suggesting non-normal distribution of the data (Table 5.17).  

 

         

Figure 5.6 Histogram with normal curve fitted for OPD. 
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Table 5.17 Descriptive statistics for all the raw and composite parameters for the entire sample. 

 
 

 
N=88 Min Max Mean SE SD Skewness Z_Skeweness Kurtosis Z_Kurtosis 

Shapiro-
Wilk 

p-value 

V
A

R
IA

B
L

E
S

 

Known 
Age 

19 100 60.33 1.91 17.89 -0.21 -0.82 0.04 0.08 0.98 0.22 

N.On 46 399 173 7.83 73.49 .063 2.45 0.30 0.59 0.97 0.02 

N.On.Fg 23 224 110 4.89 45.90 0.545 2.12 -0.49 -0.97 0.96 0.01 

N.On.Tt 96 583 282 11.49 107.81 0.47 1.83 -0.25 -0.50 0.97 0.03 

OPD(I) 3.56 13.72 9.16 0.24 2.23 -0.28 -1.10 -0.34 -0.66 0.98 0.21 

OPD(F) 0.93 12.85 6.28 0.29 2.69 0.38 1.48 -0.31 -0.61 0.98 0.12 

OPD 4.49 25.62 15.44 0.46 4.35 -0.01 -0.02 -0.01 -0.02 0.99 0.96 

Ct.Ar 6.38 44.77 19.21 0.85 7.98 1.09 4.27 1.29 2.54 0.92 < 0.001 

Tt.Ar 26.82 155.25 63.38 2.52 23.61 0.94 3.66 1.29 2.54 0.94 < 0.001 

Es.Ar 13.64 141.09 44.17 2.28 21.37 1.33 5.19 3.54 6.96 0.91 < 0.001 

Ct.Ar/Tt.Ar 0.091 0.596 0.322 0.01 0.12 0.43 1.69 -0.78 -1.53 0.96 0.005 

On.Ar 0.015 0.052 0.032 0.001 0.01 0.14 0.56 -0.86 -1.69 0.97 0.07 

On.Pm 0.433 0.831 0.632 0.01 0.10 -0.07 -0.28 -0.95 -1.87 0.97 0.06 

On.Cr 0.858 0.945 0.910 0.001 0.02 -0.51 -1.98 -0.41 -0.81 0.96 0.02 

Grey values indicate skewness and kurtosis over the limit and not normal distribution of the data; Min=minimum, Max=maximum, 
SEE=standard error, SD=standard deviation 
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A summary of the OPD composite variables, Ct.Ar and Ct.Ar/Tt.Ar and 

secondary osteon measurements parameters for the entire sample divided into 

twenty decades age cohorts is presented in Table 5.18. Refer to Appendix B.3 for 

numerical descriptive statistics for the remaining raw variables included in this study. 

As expected, OPD values increase with increasing age (both mean and range 

values) and only OPD(F) shows S-W p-value inconsistent with a normal distribution 

in the 60-79 years old age group. Ct.Ar and Ct.Ar/Tt.Ar measurements decrease 

gradually with increasing age with the two older age cohorts showing a non-normal 

distribution of the data for both variables (S-W p-values < 0.05). Moreover, Ct.Ar has 

a positively skewed distribution for the second older age cohort (skewness = 0.93, 

SE = 0.44). Ct.Ar/Tt.Ar also exhibits a positively skewed distribution for the 60-79 

and > 80 years age groups (1.19, SE = 0.39; 1.996, SE = 0.62, respectively). On.Ar 

and On.Pm decrease with increasing age whilst On.Cr increases with increasing 

age. For the oldest age categories, all these parameters showed S-W values lower 

than 0.05 indicating inconsistencies with a normal distribution; a positively skewed 

and excessive kurtosis were observed for On.Ar and On.Pm (over accepted limits 

for both values).  

To further explore the relationship between age and all the variables included 

in this study, a Pearson´s Correlation test was computed on the entire sample. As 

seen in Table 5.19A, results indicated significant correlation between age and most 

of the variables with different degrees of strength in their association (Cohen, 1988). 

For secondary osteon frequency number, an inverse weak relation was observed 

between age and N.On (r (86) = -0.23, p < 0.01) while a stronger but still weak 

positive correlation was observed for age and N.On.Fg (r (86) = 0.03, p < 0.01): no 

significant correlation was reported for N.On.Tt probably due to this parameter being 

the sum of both intact and fragmentary secondary osteons. All OPD parameters 

exhibit a positive correlation with age indicating that osteon densities increase as 

age increases. A moderate association was seen between age and OPD(I) (r(86) = 

0.43, p < 0.01), and a strong correlation was reported for age and OPD(F) (r(86) = 

0.78, p < 0.01). OPD presented a slightly lower, but still strong, relationship with age 

(r(86) = 0.71, p < 0.01) than OPD(F). As observed in Table 5.19A, the strongest 

correlation between age and rib area measurements was observed for Ct.Ar 

indicating that this parameter decreases with increasing age (r(86) = -0.58, p < 

0.01). An inverse correlation is observed for On.Ar and On.Pm whilst a positive 
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strong correlation is observed for On.Cr (r(86) = -0.67, p < 0.01): note that all osteon 

measurements parameters show a similar strength.  

S-W results for normality suggest that eight parameters did not meet the 

assumption of normal distribution (see Table 5.17). Spearman’s Rank correlations 

were computed to corroborate the correlation between age and these variables 

(refer to statistics diagram Figure 4.11).  All associations were in accordance with 

the ones obtained through Pearson’s Correlation analysis (Table 5.19B) (Evans, 

1996).  

Figure 5.7 presents the scatter plot for the association of known age and OPD 

with the best line of fit. The remaining variables are graphically illustrated in 

Appendix B.4. 

 
Figure 5.7 Scatter plot representing the association between known age and OPD on 

the entire sample. 
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Table 5.18 Summary table of descriptive statistics for compute variables in the entire sample divided in 20 years age cohorts. 

 
Variable Min Max Mean SE SD Skewness Z_Skewness Kurtosis Z_Kurtosis 

Shapiro-
Wilk 

p-
value 

19-39 
years 
old 

(N=11) 
 

Known Age 19 38 28.27 2.17 7.21 0.08 0.12 -1.55 -1.21 0.91 0.22 

OPD(I) 3.56 11.50 7.51 0.81 2.70 -0.08 -0.12 -1.02 -0.79 0.91 0.27 

OPD(F) .93 6.27 3.01 0.47 1.58 0.85 1.29 0.56 0.44 0.94 0.48 

OPD 4.49 17.49 10.52 1.23 4.10 0.10 0.15 -0.69 -0.54 0.96 0.82 

Ct.Ar 15.78 42.11 26.42 2.67 8.87 0.67 1.01 -0.59 -0.46 0.92 0.36 

Ct.Ar/Tt.Ar 0.199 0.596 0.415 0.04 0.13 -0.37 -0.56 -0.82 -0.64 0.94 0.49 

On.Ar 0.025 0.049 0.040 0.001 0.01 -0.92 -1.39 -0.09 -0.08 0.89 0.14 

On.Pm 0.575 0.809 0.722 0.02 0.07 -1.13 -1.71 0.43 0.34 0.87 0.09 

On.Cr 0.858 0.916 0.885 0.01 0.02 0.45 0.68 -1.47 -1.15 0.89 0.15 

40-59 
years 
old 

(N=28) 
 

Known Age 40 58 51.32 1.00 5.29 -0.41 -0.92 -0.92 -1.07 0.93 0.07 

OPD(I) 4.48 11.84 8.37 0.35 1.85 0.01 0.01 -0.36 -0.41 0.98 0.86 

OPD(F) 2.30 8.33 4.74 0.29 1.51 0.48 1.09 -0.43 -0.50 0.96 0.46 

OPD 8.03 20.17 13.11 0.55 2.90 0.41 0.93 -0.09 -0.11 0.98 0.88 

Ct.Ar 9.26 44.77 22.60 1.59 8.42 0.93 2.11 0.88 1.02 0.94 0.11 

Ct.Ar/Tt.Ar 0.091 0.556 0.377 0.02 0.11 -0.61 -1.39 0.26 0.30 0.97 0.52 

On.Ar 0.016 0.052 0.037 0.002 0.01 -0.27 -0.61 0.30 0.35 0.97 0.59 

On.Pm 0.446 0.831 0.691 0.02 0.09 -0.67 -1.53 0.95 1.11 0.96 0.32 

On.Cr 0.859 0.933 0.901 0.001 0.02 0.02 0.04 -0.056 -0.65 0.97 0.66 

Grey values indicate not normal distribution of the data; Min=minimum, Max=maximum, SE=standard error, SD=standard deviation 
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Table 5.18. (Continued) Summary table of descriptive statistics for compute variables in the entire sample divided in 20 years age. 

 
Variable Min Max Mean SE SD Skewness Z_Skeweness Kurtosis Z_Kurtosis 

Shapiro-
Wilk 

p-value 

60-79 
years 
old 

(N=36) 
 

Known Age 60 78 67.03 0.75 4.53 0.38 0.98 0.05 0.06 0.95 0.09 

OPD(I) 5.38 12.44 9.89 0.28 1.67 -0.54 -1.37 0.07 0.09 0.96 0.22 

OPD(F) 3.78 12.85 7.50 0.36 2.14 0.74 1.88 -0.14 -0.18 0.93 0.03 

OPD 12.79 24.85 17.40 0.48 2.88 0.49 1.24 -0.05 -0.06 0.96 0.29 

Ct.Ar 8.91 28.58 16.49 0.85 5.09 0.73 1.86 0.19 0.26 0.93 0.03 

Ct.Ar/Tt.Ar 0.152 0.550 0.279 0.02 0.09 1.19 3.04 1.18 1.54 0.90 0.01 

On.Ar 0.015 0.046 0.028 0.001 0.01 0.24 0.61 -0.41 -0.54 0.98 0.62 

On.Pm 0.433 0.768 0.595 0.01 0.08 -0.05 -0.12 -0.71 -0.92 0.98 0.75 

On.Cr 0.882 0.945 0.919 0.002 0.01 -0.22 -0.57 0.09 0.12 0.98 0.83 

>80 
years 
old 

(N=13) 
 

Known Age 80 100 88.31 1.73 6.25 0.51 0.83 -0.51 -0.43 0.94 0.51 

OPD(I) 6.06 13.72 10.26 0.75 2.72 -0.30 -0.49 -1.49 -1.25 0.91 0.15 

OPD(F) 5.92 12.64 8.97 0.58 2.09 0.17 0.28 -0.77 -0.64 0.97 0.85 

OPD 12.48 25.62 19.23 1.17 4.23 -0.11 -0.17 -0.91 -0.77 0.96 0.78 

Ct.Ar 6.38 24.44 13.37 1.44 5.19 0.75 1.22 0.03 0.03 0.94 0.49 

Ct.Ar/Tt.Ar 0.130 0.548 0.241 0.03 0.11 1.99 3.24 4.64 3.89 0.79 0.01 

On.Ar 0.016 0.041 0.023 0.002 0.01 1.66 2.69 3.11 2.62 0.84 0.02 

On.Pm 0.457 0.723 0.536 0.02 0.07 1.52 2.46 2.79 2.34 0.87 0.04 

On.Cr 0.904 0.942 0.928 0.004 0.01 -0.80 -1.29 -0.83 -0.69 0.86 0.04 

Grey values indicate not normal distribution of the data; Min=minimum, Max=maximum, SE=standard error, SD=standard deviation 
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Table 5.19 Pearson´s correlation (A) and Spearman´s correlation (B) coefficients for age and all the variables for the entire sample 

5.19A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Known Age 1 
             

2. N.On -0.23* 1 
            

3. N.On.Fg 0.35** 0.61** 1 
           

4. N.On.Tt -0.01 0.94** 0.84** 1 
          

5. OPD(I) 0.43** 0.41** 0.52** 0.50** 1 
         

6. OPD(F) 0.78** -0.14 0.61** 0.16 0.55** 1 
        

7. OPD 0.71** 0.12 0.64** 0.36** 0.86** 0.91** 1 
       

8. Ct.Ar -0.56** 0.79** 0.28** 0.66** -0.18 -0.52** -0.41** 1 
      

9. Tt.Ar -0.13 0.43** 0.33** 0.43** -0.02 -0.09 -0.06 0.44** 1 
     

10. Es.Ar 0.07 0.17 0.26* 0.23* 0.06 0.09 0.09 0.11 0.94** 1 
    

11. Ct.Ar/Tt.Ar -0.49** 0.39** -0.07 0.24* -0.14 -0.51** -0.38** 0.56** -0.41** -0.66** 1 
   

12. On.Ar -0.64** 0.35** -0.11 0.19 -0.35** -0.61** -0.56** 0.61** 0.04 -0.17 0.61** 1 
  

13. On.Pm -0.67** 0.36** -0.12 0.19 -0.34** -0.63** -0.56** 0.62** 0.05 -0.17 0.62** 0.99** 1 
 

14. On.Cr 0.67** -0.06 0.38** 0.12 0.35** 0.60** 0.55** -0.31** 0.04 0.17 -0.41** -0.54** -0.58** 1 

 

5.19B 1 2 3 4 8 9 10 11 14 

1. Known Age 1                 

2. N.On -0.23* 1               

3. N.On.Fg 0.31** 0.64** 1             

4. N.On.Tt -0.02 0.93** 0.86** 1           

8. Ct.Ar -0.58** 0.78** 0.34** 0.67** 1         

9. Tt.Ar -0.09 0.43** 0.39** 0.49** 0.45** 1       

10. Es.Ar 0.16 0.21* 0.36** 0.32** 0.13 0.93** 1     

11. Ct.Ar/Tt.Ar -0.55** 0.43** 0.01 0.26* 0.61** -0.39** -0.68** 1   

14. On.Cr 0.67** -0.07 0.35** 0.11 -0.32** 0.05 0.22* -0.39** 1 

        Correlation significant at 0.05, ** Correlation significant at 0.01 
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5.4.2 Age and histological variables by sexes and samples 

The entire sample was divided into sub-sample sets in order to explore the 

relationship between the histological variables and sex and sample (Cretans and 

Cypriots), respectively.  

All numerical descriptive statistics for males and females are shown in Table 

5.20. Mean age for both males (n = 40) and females (n = 48) is very close. 

Moreover, normal distribution for both sexes was reported (Male, SW = 0.96, df = 

40, p = 0.22; Females, SW = 0.97, df = 48, p = 0.42). Figure 5.8 shows age 

distribution and density plots for both sexes separately: it can be observed in the 

histograms that males have a higher frequency of cases ranging from 50 to 70 years 

of age while females exhibit a more even age range distribution; however, both 

sexes present similar density plots. Some differences in the number of osteons were 

observed with males having generally more N.On, N.On.Fg and N.On.Tt than 

females. Osteon population densities showed similar values between sexes with 

slightly larger OPD(I) for males and slightly larger OPD(F) for females. Sexually 

dimorphic differences were observed in the rib area parameters (Ct.Ar, Tt.Ar and 

Es.Ar) with males exhibiting larger values than females; however, Ct.Ar/Tt.Ar 

appeared to be larger in females than in males. On.Ar, On.Pm and On.Cr did not 

exhibit apparent differences between sexes. Four parameters for males and five 

parameters for females showed S-W p-values inconsistent with a normal distribution 

(Table 5.20). Figure 5.9 presents scatterplots showing the association between 

known age and OPD for males and females, separetely. The remaining scatter plots 

can be found in Appendix B.5. 
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Table 5.20 Descriptive statistics for the entire sample divided by sex. 

 

MALE N=40 Statistics 

 

FEMALE 

N=48 
Min Max Mean SE SD Skewness Z_Skewness Kurtosis Z_Kurtosis 

Shapiro-
Wilk 

p-value 

V
A

R
IA

B
L
E

S
 

Known Age 
20 89 60.10 2.61 16.53 -0.58 -1.56 0.20 0.27 0.96 0.22 

19 100 60.52 2.76 19.11 -0.02 -0.07 -0.03 -0.05 0.97 0.42 

N.On 
66 399 194.80 11.78 74.52 0.47 1.27 0.31 0.42 0.98 0.57 

46 355 154.54 9.83 68.09 0.81 2.36 0.77 1.14 0.95 0.04 

N.On.Fg 
47 212 118.00 7.18 45.44 0.46 1.23 -0.81 -1.10 0.95 0.08 

23 224 102.65 6.58 45.58 0.68 1.98 -0.07 -0.10 0.95 0.06 

N.On.Tt 
142 583 312.80 17.05 107.8 0.50 1.34 -0.07 -0.09 0.97 0.26 

96 507 257.19 14.74 102.1 0.47 1.36 -0.55 -0.81 0.96 0.07 

OPD(I) 
5.38 13.04 9.38 0.32 2.02 0.09 0.25 -0.66 -0.90 0.95 0.06 

3.56 13.72 8.98 0.35 2.40 -0.41 -1.18 -0.41 -0.61 0.97 0.34 

OPD(F) 
2.18 12.85 6.10 0.42 2.66 0.82 2.19 0.04 0.06 0.93 0.02 

0.93 12.64 6.43 0.40 2.74 0.05 0.16 -0.31 -0.47 0.98 0.56 

OPD 
7.65 24.93 15.48 0.65 4.08 0.74 1.99 0.03 0.04 0.93 0.02 

4.49 25.62 15.42 0.66 4.61 -0.42 -1.23 -0.02 -0.03 0.97 0.34 

Ct.Ar 
9.26 44.77 21.16 1.37 8.64 1.13 3.03 0.92 1.26 0.89 0.01 

6.38 39.95 17.59 1.02 7.07 0.92 2.67 1.15 1.70 0.94 0.02 

In bold values over the limit of skewness and kurtosis; p-values < 0.05; Male (grey coloured), Female (non-coloured); Min=minimum, Max=maximum, 

SE=standard error, SD=standard deviation
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Table 5.20. (Continued) Descriptive statistics for the entire sample divided by sex. 
 

 

MALE N= 40 Statistics 

 

FEMALE 

 N= 48 
Min Max Mean SE SD Skewness Z_Skewness Kurtosis Z_Kurtosis 

Shapiro-
Wilk 

p-value 

V
A

R
IA

B
LE

S 

Tt.Ar 
26.82 155.25 74.66 4.24 26.79 0.40 1.06 0.65 0.89 0.97 0.33 

32.65 90.60 53.98 2.23 15.42 0.72 2.11 -0.08 -0.12 0.94 0.01 

Es.Ar 
14.52 141.09 53.50 3.97 25.12 0.95 2.54 2.20 3.00 0.93 0.02 

13.64 72.87 36.39 1.97 13.64 0.48 1.41 0.01 0.01 0.97 0.30 

Ct.Ar/Tt.Ar 
0.091 0.572 0.304 0.02 0.12 0.49 1.30 -0.35 -0.48 0.97 0.36 

0.152 0.596 0.336 0.02 0.13 0.37 1.09 -1.06 -1.57 0.94 0.01 

On.Ar 
0.016 0.052 0.032 0.001 0.01 0.43 1.16 -0.60 -0.82 0.96 0.12 

0.015 0.051 0.031 0.001 0.01 -0.03 -0.09 -1.07 -1.58 0.96 0.08 

On.Pm 
0.446 0.831 0.636 0.02 0.10 0.18 0.48 -0.62 -0.84 0.97 0.47 

0.433 0.818 0.629 0.02 0.11 -0.19 -0.55 -1.19 -1.76 0.95 0.03 

On.Cr 
0.858 0.945 0.913 0.003 0.02 -0.69 -1.85 0.02 0.02 0.95 0.08 

0.859 0.942 0.908 0.002 0.02 -0.40 -1.17 -0.57 -0.85 0.97 0.18 

In bold values over the limit of skewness and kurtosis; p-values < 0.05; Male (grey coloured), Female (non-coloured) Min=minimum, Max=maximum, 

SE=standard error, SD=standard deviation 
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Figure 5.8 Sex histograms; both sexes percentages (males-blue, females-green) 

(bottom left); density plots by sexes (males –blue, females-pink) (bottom right). 
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Figure 5.9 Scatter plot for association between known age and OPD: males (left), 

females (right). 

Descriptive statistics for Cretans and Cypriots samples separately are 

presented in Table 5.21. Age distributions for both population samples are shown in 

Figure 5.10. Both samples presented approximately normal age distributions (Crete, 

SW = 0.97, df = 41, p = 0.48; Cypriots, SW = 0.96, df = 47, p = 0.11). It can be 

observed through the histograms that the Cretan sample was more evenly 

distributed with individuals representing all age ranges. The Cypriot sample, 

however, had a higher number of individual older than 60 years old and fewer cases 

under 40-50 years of age. As a general trend, values for the Cypriot sample were 

higher than values for the Cretan sample (Table 5.21). All osteons frequency 

numbers (N.On, N.On.Fg and N.On.Tt) were higher for Greek-Cypriots than for 

Cretans. The same pattern was observed for osteon densities values with the more 

noticeable difference between the two samples being accounted by OPD. Rib area 

and secondary osteons measurements presented the same trend for which all 

values were higher for the Cypriots. Seven parameters for the Cretan sample and 

three parameters for the Cypriot sample showed non-normal distribution according 

to the S-W test (p < 0.05). Associations between age and OPD for each sub-sample 

are shown in Figure 5.11. The remaining scatter plots can be consulted in Appendix 

B.6. 
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Table 5.21 Descriptive statistics for the sample divided by samples. 

 

CRETE N=41 Statistics 

  

CYPRUS N=47 Min Max Mean SE SD Skewness Z_Skewness Kurtosis Z_Kurtosis 
Shapiro-

Wilk 
p-value 

V
A

R
IA

B
L

E
S

 

Known Age 
19 98 57.49 3.31 21.17 -0.07 -0.20 -0.82 -1.13 0.97 0.49 

20 100 62.81 2.07 14.20 0.06 0.18 1.57 2.30 0.96 0.11 

N.On 
60 299 150.10 9.18 58.81 0.42 1.13 -0.59 -0.81 0.96 0.14 

46 399 192.68 11.62 79.64 0.46 1.32 0.07 0.11 0.97 0.50 

N.On.Fg 
23 183 86.83 5.24 33.58 0.98 2.65 1.28 1.77 0.92 0.01 

50 224 129.51 6.74 46.23 0.09 0.27 -0.78 -1.15 0.97 0.39 

N.On.Tt 
111 482 236.93 12.82 82.11 0.69 1.88 0.33 0.46 0.95 0.07 

96 583 322.19 16.41 112.51 0.06 0.18 -0.33 -0.49 0.98 0.71 

OPD(I) 
3.56 13.04 8.85 0.36 2.33 -0.31 -0.83 -0.35 -0.49 0.97 0.38 

4.48 13.72 9.44 0.31 2.14 -0.21 -0.60 -0.38 -0.56 0.98 0.81 

OPD(F) 
0.93 11.88 5.66 0.42 2.71 0.52 1.40 -0.06 -0.08 0.96 0.17 

2.25 12.85 6.83 0.38 2.59 0.38 1.09 -0.35 -0.51 0.97 0.39 

OPD 
4.49 24.93 14.50 0.70 4.50 -0.01 -0.04 0.23 0.31 0.98 0.91 

8.03 25.62 16.26 0.60 4.09 0.14 0.42 -0.36 -0.52 0.98 0.89 

Ct.Ar 
8.17 42.11 17.74 1.19 7.63 1.05 2.85 1.19 1.65 0.92 0.01 

6.38 44.77 20.49 1.19 8.13 1.19 3.43 1.48 2.18 0.91 0.001 

In bold values over the limit of skewness and kurtosis; p-values < 0.05; Male (grey coloured), Female (non-coloured) Min=minimum, Max=maximum, 

SE=standard error, SD=standard deviation 



www.manaraa.com

 

 

163 

Table 5.21. (Continued) Descriptive statistics for the dataset divided by samples. 

 

CRETE N=41 Statistics 

 

CYPRUS 

N=47 
Min Max Mean SE SD Skewness Z_Skewness Kurtosis Z_Kurtosis 

Shapiro-
Wilk 

p-value 

V
A

R
IA

B
LE

S 

Tt.Ar 
26.82 155.25 60.29 3.74 23.96 1.64 4.44 4.77 6.58 0.88 < 0.001 

33.50 115.65 66.08 3.39 23.23 0.37 1.08 -0.98 -1.44 0.94 0.02 

Es.Ar 
13.64 141.09 42.55 3.61 23.12 2.09 5.66 7.10 9.80 0.83 < 0.001 

15.07 87.79 45.58 2.90 19.87 0.44 1.26 -0.68 -1.00 0.95 0.06 

Ct.Ar/Tt.Ar 
0.091 0.596 0.316 0.02 0.13 0.49 1.33 -0.67 -0.93 0.95 0.07 

0.156 0.556 0.326 0.02 0.11 0.42 1.20 -0.96 -1.41 0.94 0.03 

On.Ar 
0.016 0.050 0.030 0.001 0.01 0.32 0.85 -1.08 -1.50 0.96 0.04 

0.015 0.052 0.033 0.001 0.01 0.08 0.24 -0.45 -0.66 0.98 0.87 

On.Pm 
0.446 0.809 0.622 0.02 0.11 0.16 0.43 -1.25 -1.72 0.95 0.03 

0.433 0.831 0.646 0.01 0.09 -0.23 -0.67 -0.39 -0.57 0.98 0.82 

On.Cr 
0.858 0.942 0.905 0.003 0.02 -0.39 -1.06 -0.79 -1.10 0.92 0.15 

0.859 0.945 0.913 0.002 0.02 -0.56 -1.62 0.04 0.06 0.97 0.24 

In bold values over the limit of skewness and kurtosis; p-values < 0.05; Male (grey coloured), Female (non-coloured) Min=minimum, Max=maximum, 

SE=standard error, SD=standard deviation 
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Figure 5.10 Sample histograms; both samples percentages (Crete-blue, Cyprus-

green) (bottom left), and density plots by sample (Crete-pink, Cyprus-blue) (bottom 

right). 
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Figure 5.11 Association between age and histological variables for Cretans (left) and 

Cypriots (right). 

 Pearson´s correlation coefficients were computed for each sub-group (sex 

and sample) to assess the strength and direction of the relationship between known 

age and each variable (Table 5.22). A similar pattern in the direction of the 

association (positive or negative) as seen for the entire sample was observed on 

most of the variables for the four sub-groups. 

Table 5.22 Pearson´s correlation coefficients between all the variables and age by 

groups: sex and sample. 

 SEX SAMPLE 

 

MALE FEMALE CRETE CYPRUS 

1. N.On -0.11 -0.34* (-0.36**) -0.27 -0.34* 

2. N.On.Fg 0.44** 0. 29* 0.37* (0.31*) 0.31* 

3. N.On.Tt 0.11 -0.11 -0.05 -0.11 

4. OPD(I) 0.51** 0.39** 0.42** 0.43** 

5. OPD(F) 0.71** (0.79**) 0.82** 0.77** 0.81** 

6. OPD 0.72**(0.79**) 0.69** 0.68** 0.73** 

7. Ct.Ar -0.40* (-0.42**) -0.73** (-0.732**) -0.63** (-0.68**) -0.59** (-0.58**) 

8. Tt.Ar -0.11 -0.18(-0.07) -0.26 (-0.30) -0.01 (0.08) 

9. Es.Ar 0.01 (0.08) 0.17 -0.06 (0.10) 0.23 

10. Ct.Ar/Tt.Ar -0.27 -0.66**(-0.70**) -0.43** -0.65** (-0.72**) 

11. On.Ar -0.54** -0.69** -0.64** (-0.66**) -0.73** 

12. On.Pm -0.58** -0.73**(-0.77**) -0.68** (-0.69**) -0.76** 

13. On.Cr 0.67** 0.68** 0.68** 0.64** 

* Correlation significant at 0.05, ** Correlation significant at 0.01; italics indicates Spearman´s Rank 
Correlation for non-normally distributed variable 

As exceptions, N.On.Tt, Tt.Ar and Es.Ar results suggested direct or inverse 

associations depending on the sub-groups (Table 5.22). For males N.On.Tt 

exhibited a positive association indicating that, although not statistically significant, 
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this variable tends to increase with age for males. Based on the high skewness 

value reported for this variable, Spearman´s correlation was recommended 

(Mukaka, 2012).In the Cretan sample, there was an outlier for both Tt.Ar and Es.Ar 

(155 and 141 mm2, respectively); after examination of the values, not obvious 

pathological or metabolic explanation was identified, and thus, this individual was 

kept for further analysis. This might have caused the direction discrepancies 

between Pearson´s and Spearman´s correlation coefficients for Es.Ar results. The 

Cypriot sample results indicated a difference in the direction of the correlation on 

Tt.Ar and Es.Ar (note that the values were all close to zero). The reported 

differences may be also the result of intrinsic size differences between males and 

females within the two samples.  

In order to compare the sub-samples age distributions, a Welch's t-test  was 

applied for comparison on each pair of groups – males and females, Cretans and 

Cypriots (Kohr and, Games 1974). Next, a parametric – Welch´s t-test – or non-

parametric –Mann-Whitney U test (Mann and Whitney, 1947), were applied based 

on the results of testing the normality of distribution of the variables (see Table 5.20 

and Table 5.21 for S-W  for sexes and samples means). 

Welch t-test results by sex did not indicate any statistically significant 

difference between age distributions among males and females (t (85.86) = 0.01, p 

= 0.91). This suggested that the samples can be compared for differences in the 

histomorphometric variables. Two variables indicated statistically significant 

differences between the sexes.  The N.On.Tt mean for males is 313 while females 

report a mean of 257 with a different distribution between the sexes as seen in 

Table 5.23. The remaining variables did not show any statistically significant 

difference. The Mann-Whitney U test was run for the non-normally distributed 

variables. Three variables were found to be statistically significantly different 

between the two groups. N.On, Tt.Ar and Es.Ar present significantly higher values 

for males than for females (see mean ranks in Table 5.24). The remaining 

histomorphometric variables did not show any statistically significant difference 

between the sexes.  
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Table 5.23 Welch´s t-test by sex. 

 

 

 

 

 

 
Table 5.24 Mann-Whitney U Test by sex. 

Mann-Whitney U 
 

Mean Rank U Z p-value 

N.On 
Male 52.29 

149 -2.61 0.009 
Female 38.01 

OPD(F) 
Male 41.38 

836 -1.04 0.29 
Female 47.10 

OPD 
Male 42.93 

897 -0.53 0.59 
Female 45.81 

Ct.Ar 
Male 49.91 

744 -3.86 0.07 
Female 39.99 

Tt.Ar 
Male 56.03 

499 -3.86 0.001 
Female 34.90 

Es.Ar 
Male 54.85 

546 -3.47 0.001 
Female 35.88 

Ct.Ar/Tt.Ar 
Male 41.53 

841 -1.00 0.32 
Female 46.97 

On.Pm 
Male 45.03 

939 -0.18 0.86 
Female 44.06 

 

Regarding samples differences, the results from the Welch t-test for Cretans 

and Cypriots also exhibited non-statistically significant difference between the two 

samples´ age distributions (t (68.41) = 1.85, p = 0.18). Note that through visual 

inspection of the histograms differences in the age distributions of the two samples 

were noticed (Figure 5.10). Thus, the bootstrapping method was used to confirm the 

preliminary results and the same outcome was obtained.  

Welch´s Test results for the normally distributed variables indicated that four 

variables were different between the samples (Table 5.25). The N.On was 

statistically significant higher in Cypriots than in Cretans (the means are 192.7 and 

150.1, respectively). The N.On.Tt mean for Cretans was 237 while Cypriots 

presented a significantly higher mean of 322. OPD(F) was statistically significantly 

higher for Cypriots (mean = 6.83) than for Cretans (mean = 5.66). The remaining 

variables did not show any differences. Mann-Whitney U Test results indicated that 

Welch´s 
Test 

Statistics df2 p-value 

  N.On.Fg 2.48 83.26 0.12 

N.On.Tt 6.09 81.38 0.02 

OPD(I) 0.70 85.99 0.41 

On.Ar 0.16 84.73 0.69 

On.Cr 1.18 82.28 0.28 
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just one variable differed between the samples with Cretans showing a lower 

number of N.On.Fg (mean rank = 31.72) than Cypriots (mean rank = 55.65) (Table 

5.26). 

Table 5.25 Welch´s t-test by samples. 

 

 

Table 5.26 Mann-Whitney U Test by samples. 

Mann-Whitney U 
 

Mean 
Rank 

U Z p-value 

N.On.Fg 
Crete 31.72 

440 -4.38 < 0.001 
Cyprus 55.65 

Ct.Ar 
Crete 39.12 

743 -1.84 0.06 
Cyprus 49.19 

Tt.Ar 
Crete 40.78 

811 -1.28 0.20 
Cyprus 47.74 

Es.Ar 
Crete 41.29 

832 -1.10 0.27 
Cyprus 47.30 

Ct.Ar/Tt.Ar 
Crete 42.85 

896 -0.56 0.57 
Cyprus 45.94 

On.Ar 
Crete 40.24 

789 -1.46 0.14 
Cyprus 48.21 

On.Pm 
Crete 40.83 

813 -1.26 0.21 
Cyprus 47.70 

 

5.4.2.1 One-Way ANCOVA: sex and sample effect 

Further investigation of the differences among histological parameters 

between sexes and samples was carried out using an analysis of covariance (One-

way ANCOVA). Note that for this test only the histological variables that showed a 

significant relation with age for entire sample and subgroups will be examined.  

Results from ANCOVA testing assumptions indicated the following: the 

examination of scatterplots for both males and females, and Cretans and Cypriots, 

suggests a fairly linear relation between all parameters and each sub-group (see 

Welch´s 
Test 

Statistics df2 p-value 

N.On 8.27 83.82 0.005 

N.On.Tt 16.76 83.52 < 0.001 

OPD(I) 1.51 81.94 0.22 

OPD(F) 4.25 83.26 0.042 

OPD 3.64 81.64 0.06 

On.Cr 3.02 80.27 0.08 
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Appendix B.5 and B.6). Hence, linearity assumption was assumed for all the 

variables. The interaction term was non-statistically significant indicating that 

homogeneity of regression slopes assumption was met. Standardised residuals for 

each sex/sample and for the overall model were tested for normality using S-W test. 

Non-normality was suggested by a p-value less than the cut-off (p < 0.05). If this 

assumption was violated, it will be reported in the text. Homoscedasticity was tested 

by the examination of standardised residuals versus predicted values; with all the 

scatter plots indicating a random distribution of the values. Moreover, values were 

equally spread along the axes. Homogeneity of variances assumption was checked 

through Levene´s test. The identification of outliers in the data was done by 

inspection of the residuals minimum and maximum values confirming that all cases 

fell within ± 3 standard deviations. Thus, this assumption was also met for all the 

parameters.  

One-way ANCOVA was run to determine the sex effect on the following 

variables: N.On.Fg, OPD(I), OPD(F), OPD, Ct.Ar, Ct.Ar/Tt.Ar, and secondary osteon 

measurements (On.Ar, On.Pm and On.Cr), with age as a covariate. For all the 

dependent variables, known age was reported to be a statistically significant 

covariate. Table 5.27 presents the means and adjusted means for all the dependent 

variables by sex as well as p-values for homogeneity of regression slopes and 

Levene´s Test results. 
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Table 5.27 ANCOVA results for: means and adjusted means for males and females 

as groups and age as a covariate; homogeneity of regression slopes and Levene´s 

Test p-values. 

  
Unadjusted Adjusted 

Homogeneity of 
regression 

slopes 

Levene´s 
test  Sex 

effect 

  
Mean SD Mean SE 

F* 
(1,84) 

p-value p-value 

N.On.Fg 
M 118 7.18 118.21 6.76 

0.958 0.33 0.44 NO 
F 102.65 6.58 102.50 6.17 

OPD(I) 
M 9.38 2.02 9.38 0.321 

0.264 0.61 0.04 NO 
F 8.98 2.4 8.98 0.293 

OPD(F) 
M 6.10 2.66 6.12 0.270 

0.025 0.87 0.15 NO 
F 6.43 2.74 6.41 0.247 

OPD 
M 15.48 4.08 15.51 0.494 

0.061 0.81 0.14 NO 
F 15.42 4.06 15.38 0.451 

Ct.Ar 
M 21.16 8.64 21.10 1.02 

0.610 0.44 0.01 YES 
F 17.59 7.06 17.63 0.93 

Ct.Ar/Tt.Ar 
M 0.304 0.12 0.303 0.02 

3.55 0.06 0.46 NO 
F 0.336 0.13 0.337 0.01 

On.Ar 
M 0.0323 0.01 0.032 0.001 

0.366 0.55 0.61 NO 
F 0.0315 0.01 0.032 0.001 

On.Pm 
M 0.637 0.09 0.636 0.01 

0.764 0.38 0.95 NO 
F 0.629 0.11 0.630 0.011 

On.Cr 
M 0.913 0.02 0.913 0.003 

0.409 0.52 0.71 NO 
F 0.908 0.02 0.908 0.002 

M= male, F= female, SD= standard error, SE= standard error; Sex*Age interaction  

ANCOVA results for N.On.Fg indicates that standardised residuals for females 

and the overall model were not normally distributed (p = 0.03 and p = 0.02, 

respectively). When age was adjusted, the sex effect was shown to be not 

statistically significant F(1, 85) = 2.94, p = 0.090, partial η2 = 0.034. Based on the 

violation of normality, LnN.On.Fg was used as the dependent variable and the 

analysis performed again. Normality of residuals was confirmed for both sexes and 

the overall model, and the remaining assumptions were also met. The sex effect 

was also reported as non-statistically significant (F(1, 85) = 3.77, p = 0.060, partial 

η2 = .043) with the bootstrapping procedure confirming these results. 

For OPD(F) and OPD, normality of standardised residuals was not statistically 

significant for each sex and for the overall model (p > 0.05). However, OPD(I) 
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showed a deviation from normal distribution for the male group (S-W p = 0.047). 

Homogeneity of variances was assessed by Levene´s test indicating no violation for 

OPD(F) and OPD, although a p-value less than 0.05 was reported for OPD(I) (Table 

27). The final results indicated that there was no statistically significant difference 

between sexes for OPD(F) and OPD as assessed by the sex effect being reported 

as F(1, 85) = 0.607, p = 0.438, partial η2 = 0.007, and (F(1, 85) = 0.038, p = 0.846, 

partial η2 = 0.005, respectively.  

Based on the violations observed for OPD(I), ANCOVA analysis was 

performed on LnOPD(I) as the dependent variable. All the previous assumptions 

were met except for normality of standardised residual both for each sex and for the 

overall model (p < 0.05), and for homogeneity of variances (Levene´s Test p < 0.05). 

If the results were interpreted ignoring these violations, the same pattern was 

observed for the non-transformed and the Ln-transformed parameter with non-

statistically significant sex effect (OPD(I)= F(1, 85) = 0.918, p = 0.341, partial η2 = 

0.011 and LnOPD(I)= F(1, 85) = 1.45, p = 0.232, partial η2 = 0.017).  No further 

transformation of this variable was performed as ANCOVA is considered a robust 

test for normality violation. Moreover, further transformation of the data will 

complicate the interpretation of the results. Lastly, bootstrapping confirmed the non-

statistically significant sex effect for OPD(I). 

As seen in Table 5.27, homogeneity of variance assumption was violated for 

Ct.Ar. Moreover, non-normality of standardised residuals for the overall model was 

reported (S-W test < 0.05). With adjustment of age as a covariate, a statistically 

significant sex effect was found for Ct.Ar ((F(1, 85) = 6.26, p < 0.010, partial η2 = 

0.069). Based on the violations reported, LnCt.Ar was used as the dependent 

variable. In this case, normality of standardised residuals was confirmed for both 

sexes separately and the overall model (p > 0.05). The homogeneity of variance 

was still an issue (Levene´s test significance p-value < 0.05). After the adjustment of 

age, the sex effect was still statistically significant (F(1, 85) = 7.36, p < 0.010, partial 

η2 = 0.080). Post hoc analysis with Bonferroni adjustment for non-transformed Ct.Ar 

showed that this parameter was higher in males than in females with a mean 

difference of 3.46 (95% CI, 0.713-6.219, p < 0.010). Again, the bootstrapping 

process confirmed the reported results. 
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All assumptions for Ct.Ar/Tt.Ar were met, and the effect of sex after the 

adjustment of age was not statically significant as assessed by the ANCOVA results 

(F(1, 85) = 2.204, p = 0.141, partial η2 = 0.025). 

The remaining variables are related to secondary osteons measurements. 

On.Ar, On.Pm and On Cr ANCOVA results showed that with age as a covariate, the 

effect of sex on these variables was not statistically significant F(1, 85) = 0.176, p = 

0.676, partial η2 = 0.002; (F(1,85) = 0.130, p = 0.719, partial η2 = 0.002; (F(1,85) = 

2.436, p = 0.122, partial η2 = 0.028, respectively). 

The same histological parameters were used to determine whether age was a 

significant covariate and sample effect (Crete and Cyprus) was statistically 

significant. In this analysis, the covariate of age was also found to be statistically 

significant for all the models. Table 5.28 reports means and adjusted means for all 

the dependent variables by sample, homogeneity of regression slopes and Levene´s 

Test p-values. 

Table 5.28 ANCOVA results for means and adjusted means for Cretans and Cypriots 

as groups and age as a covariate; Homogeneity of regression slopes and Levene´s 

Test p-values. 

  
Unadjusted Adjusted 

Homogeneity of 
regression slopes 

Levene´s 
test  Sample 

effect 

  
Mean SD Mean SE F (1,84)* p-value p-value 

OPD(I) 
CR 8.84 2.32 8.99 0.32 

0.472 0.49 0.42 NO 
CY 9.43 2.13 9.31 0.29 

OPD 
CR 14.5 4.49 14.98 0.49 

2.91 0.09 0.49 NO 
CY 16.26 4.09 15.85 0.45 

Ct.Ar 
CR 17.74 7.63 16.98 0.99 

1.98 0.16 0.34 YES 
CY 20.49 8.13 21.15 0.93 

Ct.Ar/Tt.Ar 
CR 0.316 0.13 0.306 0.02 

3.59 0.06 0.20 NO 
CY 0.326 0.11 0.335 0.02 

On.Ar 
CR 0.303 0.01 0.029 0.001 

2.98 0.09 0.24 YES 
CY 0.033 0.01 0.034 0.001 

On.Pm 
CR 0.617 0.11 0.606 0.01 

2.30 0.13 0.12 YES 
CY 0.645 0.09 0.656 0.01 

On.Cr 
CR 0.905 0.02 0.908 0.003 

0.624 0.43 0.49 NO 
CY 0.913 0.02 0.912 0.002 

CR=Crete, CY=Cyprus, SD=standard error, SE=standard error; Sample*Age interaction  
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The homogeneity of regression slopes assumption for N.On.Fg and for 

OPD(F) was violated as indicated by the interaction term being statistically 

significant (F(1,84) = 21.83, p < 0.001; F(1,84) = 5.386, p < 0.05, respectively). 

Thus, no further analysis was performed. 

Standardised residuals obtained by OPD(I) for each sample and for the overall 

model were examined for normality assumption which was violated for Cypriots and 

for the overall model (S-W p < 0.05). When age was adjusted as a covariate, the 

sample effect was not statistically significant for OPD(I) (F(1,85) = 0.489, p = 0.486 

partial η2 = 0.006). Based on the violation of normality, the analysis was repeated 

using LnOPD(I). All the assumptions met in the previous test were met apart from 

normality of standardised residuals for both samples and the overall model (Cretans 

p < 0.05, Cypriots and overall model p < 0.001). The results for the transformed 

variable indicated that the sample effect on OPD(I) after adjustment of age was still 

not statistically significant (F(1,85) = 0.612, p = 0.436 partial η2 = 0.007) with 

bootstrapping confirming this outcome. 

OPD standardised residuals were not normally distributed for Cypriots (p < 

0.05), although the overall model approximated normality. The sample effect was 

found to be non-statistically significant after the age adjustment (F(1,85) = 1.674, p = 

0.199,  partial η2 = 0.019). The transformation of OPD was performed with LnOPD 

ANCOVA results and bootstrapping indicating non-statistical significance (F(1,85) = 

2.118, p = 0.143,  partial η2 = 0.025); however, the normality assumption was still 

violated for the Cypriot sample (p < 0.01). 

Ct.Ar standardised residuals for each sample and for the overall model were 

not normally distributed (p < 0.001). After adjustment of age, sample effect was 

found statistically significant for Ct.Ar (F(1,85) = 9.162, p < 0.010,  partial η2 = 

0.097). Post-hoc analysis was carried out with Bonferroni adjustment showing that 

the mean difference was statistically significant with Cypriots Ct.Ar being 4.16 larger 

than the Cretans Ct.Ar (95% CI: 1.429 to 6.901,  p < 0.001). Based on the violation 

of residuals normality, LnCt.Ar was used as the dependent variable. The 

standardised residuals seemed to be normally distributed for both samples and 

overall the model after the variable transformation (p > 0.05). These results 

indicated that sample effect was still different between Cretans and Cypriots 

(F(1,85) = 12.15, p < 0.010,  partial η2 = 0.125) and it is further confirmed  by the 

bootstrapping procedure. 
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Normality of standardised residuals for Ct.Ar/Tt.Ar was violated for the Cypriot 

sample (p < 0.01). No sample effect was found for the dependent variable as 

assessed by F(1,85) = 1.573, p = 0.213,  partial η2 = 0.018). LnCt.Ar/Tt.Ar was then 

used as the dependent variable and normality of the standardised residuals was 

achieved for both samples and the overall model (p > 0.05). The effect of sample on 

LnCt.Ar/Tt.Ar was still non-statistically significant as demonstrated by the ANCOVA 

results (F(1,85) = 2.596, p =.111,  partial η2 = .030). 

When age was adjust as a covariate, the sample effect was statistically 

significant for On.Ar and On.Pm (F(1,85) = 9.996, p < 0.010,  partial η2 = 0.105, and 

F(1,85) = 9.992, p < 0.010,  partial η2 = 0.106, respectively). Post hoc test with 

Bonferroni adjustment indicated that the Cypriot sample has a greater On.Ar than 

the Cretan sample with a significant mean difference of 0.005 (95% CI: 0.002 to 

0.008, p < 0.01) and a higher value for On.Pm than the Cretan sample with a mean 

difference of 0.05 (95% CI: 0.019 to 0.082, p < 0.01). 

Finally, after adjustment of age, there was no statistically significant difference 

between Cretan and Cypriots found for On.Cr (F(1,85) = 1,178, p = 0.281,  partial η2 

= 0.014). 

Group differences were further explored using the General Linear Model 

(GLM) in combination with Chow test to determine if the slopes and intercepts 

between sex and samples for each independent variables (parameters) were equal 

or differ (Crowder, 2013). The analysis was performed as described in (section 

4.2.4.4). Those parameters not normally distributed were ln-transformed (Table 

5.17).The results are shown in Table 5.29. Regarding slope differences between 

sexes, none of the variables were found to be statistically significant. Results by 

samples indicated that the regression slopes were significantly different between 

Cretans and Cypriots for LnCt.Ar, LnCt.Ar/Tt.Ar, On.Ar and On.Pm. 
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Table 5.29 Chow test results with age as the dependent variable by sex and by 

sample. 

SEX 
 

SAMPLE 

Interaction p-value 

  

Interaction p-value 

Sex*LnN.On.Fg 0.45 Sample*LnN.On.Fg 0.74 

Sex*OPD(I) 0.72 Sample*OPD(I) 0.44 

Sex*OPD(F) 0.94 Sample*OPD(F) 0.34  

Sex*OPD 0.84 Sample*OPD 0.85 

Sex*LnCt.Ar 0.06 Sample*LnCt.Ar 0.001 

Sex*LnCt.Ar/Tt.Ar 0.12 Sample*LnCt.Ar/Tt.Ar 0.03 

Sex*On.Ar 0.60 Sample*On.Ar 0.002 

Sex*On.Pm 0.76 Sample*On.Pm 0.002 

Sex*LnOn.Cr 0.37 Sample*LnOn.Cr 0.53 

 

5.5. Simple and Multiple GLM  

Generalised linear models were built to determine the relationship between 

the dependent variable (age) and the independent variables (histological 

parameters). Values related to the goodness of fit are reported in order to finally 

select the best model. Regression analysis of those variables that did not 

demonstrate any statistically significant relationship with age in the previous section 

showed a poor fit with the data, and they were excluded from further analysis. 

Diagnostic plots for the first model will be presented here as an example and the 

remaining diagnostic plots from the main models can be consulted in Appendix B.7 

and B.10). In the case of any assumptions being violated, a correction of the model 

and/or further examination of the specific statistical requirement was considered and 

will be discussed here. 

5.5.1. Simple regression models 

The relationship between the histomorphometric variables and known age was 

examined through simple linear models as described in section 4.2.4.5. The entire 

dataset was used at this stage of the analysis (N = 88).Ten simple linear models 

were generated. Table 5.30 presents a summary of all univariate models for 

secondary osteon frequency numbers and densities, rib area and secondary 

osteons measurements. Diagnostic plots can be consulted in Appendix B.7. 
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The null hypothesis was rejected for Model 1 (N.On) (F (1,86) = 4.91, p = 

0.029). R2 indicated that a very small proportion of the variance was expressed by 

the model (SEE = 17.49). AICc and BIC values were the highest of all the generated 

simple regression models (Table 5.30).The regression slope coefficient for the 

predictor was statistically significant (t = -2.22, p = 0.029). The model seemed to 

violate the assumption of independence of errors (Durbin-Watson, DW = 0.51). 

Further examination of standardised residuals against standardised predicted (error 

independence scatter plot) demonstrated a roughly rectangular pattern with all 

values falling within ± 3, and thus, suggesting that independence of errors 

assumption was met (Lomax and Hahs-Vaughn, 2012). A review of normality test 

(S-W = 0.98, df = 88, p = 0.27) and skewness and kurtosis (-0.305 and 0.149, 

respectively) of the unstandardized residuals suggested reasonable normality. 

Further assessment of the diagnostic plots indicates evidences for linearity and 

normal distribution of the residuals (Figure 5.12.1 and 5.12.2); Figure 5.12.3 

suggests homogeneity of variance and no case is identified as an influential outlier 

as assessed by Figure 5.12.4. Cook’s distance values were examined with all cases 

within the acceptable level (less than 1).  
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Figure 5.12 Diagnostic plots Model 1. Residuals vs fitted (1): roughly horizontal line 

with a random distribution of values indicating linearity. Q-Q plot (2): normal 

distribution of residuals represented by values not deviating drastically from the 

straight line. 

  

1 

2 
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Figure 5.12. (Continued) Scale-location plot (3): residuals spread equally along the 

predicted value axis with a roughly horizontal line indicating homogeneity of variance 

(homoscedasticity). Residuals vs Leverage´s values (4): no cases outlying on the top 

and bottom right corner along with Leverage values suggesting no influential 

regression outliers. 

Model 2 (N.On.Fg) regression model was statistically significant (F(1,86) = 

11.09, p = 0.001) with standardised and unstandardized slope coefficients for 

N.On.Fg being statistically significant (t = 3.45, p = 0.001) (Table 5.30). The 

proportion of the variation of age explained by the model was low (R2 = 0.12, SEE = 

16.9) in comparison with the remaining generated models. Residuals analysis 

indicated violation of the assumption of independence (DW = 0.51). Linearity and 

slightly normal distribution of the residuals was observed through the diagnostic 

3 

4 
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plots. Equal variances assumption was met and no outliers were identified. A slightly 

better fit of the data than the previous model was observed for N.On.Fg based on 

AICc and BIC values.  

Based on the hypothesis that OPD values reach an asymptote after 60 years 

of age, both linear and curvilinear models were tested in order to evaluate which 

regression model better fits the data. 

The null hypothesis was rejected for the model including OPD(I) as a predictor 

F(1,86) = 19.77, p < 0.001) (Model 3) (Table 5.30). Beta unstandarised and 

standardised coefficients were statistically significant (t = 4.44, p < 0.001). AICc and 

BIC values decrease in comparison with osteon counting models although the 

prediction power of the model is low (R2 = 0.19, SEE = 16.22). Durbin-Watson (D-W) 

value (0.68) suggests that the assumption of independent errors was not meet but 

the standardised residuals versus standardised predicted scatter plot indicated 

reasonable independence. Non-normality of the distribution of the residuals was 

reported (S-W = 0.97, df = 88, p = 0.034) although skewness and kurtosis values 

were within the acceptable range (0.073 and 0.640, respectively). Further 

assessment of the diagnostic plots suggested evidences of linearity and slightly 

normal distribution of the residuals with some deviation observed on the tails. When 

quadratic regression was applied for explaining the relation between OPD(I) and 

age, the model predictive power decreased slightly (multiple adjusted R2 = 0.17, 

SEE = 16.30) and parsimony values increased (AICc = 746.29, BIC = 755.72). The 

standardised and unstandarised partial slopes for the predictor became non- 

statistically significant (t = 0.162 , df = 86 , p = 0.82 and t = 0.601 , df = 86 , p = 0.60, 

respectively for OPD(I) and OPD(I)2) suggesting than the curvilinear model did not 

improve the fit of the data to the model. 

With OPD(F) as the independent variable (Model 4), a noticeably higher 

proportion of the variation was explained by the independent variable (R2 = 0.60, 

SEE = 11.30) along with a decrease in AICc and BIC values. The regression model 

and the standardised and unstandardized coefficients for the slope were statistical 

significant (F(1,86) = 131.16, p < 0.001). As seen in Table 5.30, independence of 

errors seemed reasonably met (DW = 1.24). Unstandarised residuals normality tests 

indicated normality (S-W = 0.99, df = 88, p = 0.93; skewness and kurtosis values of 

0.3 and 0.10, respectively) and it was further confirmed by the QQ-plot.
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Table 5.30 Summary of simple models in the entire sample set. 

*M= model, SE=standard error, SEE= standard error of the estimate, D-W=Durbin-Watson; **In bold SEE < 15 years 

N=88

Standarised 

Coefficients

B SE Beta

Regression 1504.41 1 1504.41 4.91 0.029 (Constant) 70.11 4.79 14.638 < 0.001

Residuals 26325.02 86 306.1 N.On. -0.057 0.03 -0.233 -2.217 0.029

Total 27829.44 87

Regression 3383.66 1 3383.66 11.90 0.001 (Constant) 45.436 4.68 9.717 < 0.001

Residuals 24445.77 86 284.25 N.On.Fg 0.136 0.04 0.349 3.45 0,001

Total 27829.44 87

Regression 5201.26 1 5201.26 19.7 < 0.001 (Constant) 28.631 7.34 3.903 < 0.001

Residuals 22628.17 86 263.11 OPD(I) 3.46 0.78 0.432 4.446 < 0.001

Total 27829.44 87

Regression 16808.28 1 16808.28 131.8 < 0.001 (Constant) 27.935 3.07 9.083 < 0.001

Residuals 11021.15 86 128.15 OPD(F) 5.158 0.45 0.777 11.452 < 0.001

Total 27829.44 87

Regression 13774.9 1 13774.93 84.28 < 0.001 (Constant) 15.66 5.05 3.099 0.003

Residuals 14054.54 86 163.42 OPD 2.893 0.31 0.704 9.181 < 0.001

Total 27829.44 87

Unstandarised 

Coefficients T-Value Pr>│t│

ANOVA Parameters Estimates Model Summary Goodness of fit

Model Variable
Sum of 

Squares
df

Mean 

Square

M2 N.On.Fg 0.35 0.12

BIC

M1 N.On 0.23 0.05 0.04 17.49 0.51 757 764.8

R R
2

Adj.             

R
2 SEE D-W AICcF value Pr > F

0.11 16.86 0.69 751.2 758.3

M3  OPD(I) 0.43 0.19 0.18 16.22 0.68 744.4 751.5

M4 OPD(F) 0.78 0.60 0.59 11.32 1.24 688.2 691.2

M5  OPD 0.70 0.49 0.49 12.78 1.12 702.5 709.6
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Table 5.30. (Continued) Summary of simple models in the entire sample set. 

*M= model, SE=standard error, SEE= standard error of the estimate, D-W=Durbin-Watson, **In bold SEE< 15 years 

  

N=88

Standarised 

Coefficients

B SE Beta

Regression 8646.56 1 8646.56 38.76 < 0.001 (Constant) 84.337 4.17 20.217 < 0.001

Residuals 19182.87 86 223.05 Ct.Ar -1.249 0.20 -0.557 -6.226 < 0.001

Total 27829.44 87

Regression 6900.58 1 6900.58 28.35 < 0.001 (Constant) 83.823 4.71 17.778 < 0.001

Residuals 20928.85 86 243.35 Ct.Ar/Tt.Ar -73.003 13.71 -0.498 -5.325 < 0.001

Total 27829.44 87

Regression 11250.83 1 11250.83 58.36 < 0.001 (Constant) 97.473 5.08 19.179 < 0.001

Residuals 16578.6 86 192.77 On.Ar -1163.81 152.3 -0.636 -7.64 < 0.001

Total 27829.44 87

Regression 12463.76 1 12463.76 69.75 < 0.001 (Constant) 133.224 8.84 15.065 < 0.001

Residuals 15365.67 86 178.67 On.Pm -115.24 13.79 -0.669 -8.352 < 0.001

Total 27829.44 87

Regression 12398.55 1 12398.55 69.1 < 0.001 (Constant) -445.296 60.84 -7.319 < 0.001

Residuals 15430.89 86 179.42 On.Cr 555.582 66.83 0.667 8.313 < 0.001

Total 27829.44 87

M10  On.Cr 0.67 0.45 0.44 13.39 0.76 710.7 717.8

M9  On.Pm 0.67 0.45 0.44 13.36 0.94 710.3 717.5

M8  On.Ar 0.64 0.40 0.39 13.88 0.83 717 724.1

M7 Ct.Ar/Tt.Ar 0.49 0.25 0.24 15.6 0.47 737.5 744.66

M6  Ct.Ar 0.56 0.31 0.30 14.93 0.66 729.6 729.8

T-Value Pr>│t│ R R
2

Adj.             

R
2 SEE D-W AICc BIC

ANOVA Parameters Estimates Model Summary Goodness of fit

Model Variable
Sum of 

Squares
df

Mean 

Square
F value Pr > F

Unstandarised 

Coefficients
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There was a certain curvilinear tendency observed in the residuals versus the 

fitted diagnostic scatterplot for Model 4. Homoscedasticity was assumed although 

after 70 years of age there is a slope in the trend line. No influential cases were 

identified according to Cook´s Distance values. 

Curvilinear regression analysis for Model 4 suggested that OPD(F) was 

slightly better explained through a quadratic model. The model fit values were 

improved (multiple adjusted R2 = 0.63, SEE = 10.80; AICc and BIC values of 673.9 

and 683.4, respectively). The regression model was statistically significant (F(1,86) 

= 76.81, p < 0.001) and it met the assumption of normality of residuals (SW = 0.988, 

df = 88, p = 0.62; kurtosis = 0.43, skewness = 0.207) and independence of errors 

(DW = 1.34). Standardised and unstandarised partial slope coefficients were 

statistically significant (Table 5.31). The examination of diagnostic residual plots 

suggested an improvement in the curvilinear pattern previously observed in the 

linear model. 

Table 5.31 Summary of quadratic Model 4. 

 

 

 

Model 5 includes OPD as an independent variable; the null hypothesis is 

rejected (F(1,86) = 84.29, p < 0.001) (Table 5.30). Standardised and unstandarised 

slope for OPD were significantly different from zero (t = 0.704, p < 0.001). Around 

50% of the variance in age can be explained by OPD (SEE = 12.7). A slight 

decrease in model fit of the data was observed through an increase in the AICc and 

BIC values compared to Model 4. Independence of errors and normality of the 

residuals are reasonable (DW = 1.12, skewness (0.23) and kurtosis (1.16)). Further 

examination of studentised residuals against predicted values plot indicated a 

random display of points suggesting independence. There is evidence for normality 

of residuals (S-W = 0.97, df = 88, p = 0.30). Visual examination of diagnostic plots 

suggested a random and a normal distribution of the residuals; assumption of equal 

variance was met and no influential cases are noted. Only one case seemed to be 

an outlier although Cook’s Distance and Leverage values indicate no influence on 

the regression. Curvilinear regression analysis did not improve the linear model 

Variable B SEB β t Pr >│t│ 

Intercept 12.371 5.84 
 

2.118 0.037 

OPD(F) 10.631 1.827 1.602 5.819 < 0.001 

OPD(F)2 -0.404 0.131 -0.849 -3.082 < 0.001 
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based on the values obtained by prediction accuracy rates and model fit values 

(multiple adjusted R2 = 0.486, SEE = 12.8, AICc = 704.2, BIC = 713.6). Standardised 

and unstandardized slope coefficients for OPD squared (-0.036 and -0.277, 

respectively, t = -0.687, p = 0.494) suggested that the inclusion of this variable into 

the model did not improve the fit of the data.  

Model 6 and Model 7 included predictors related to Ct.Ar and Ct.Ar/Tt.Ar. 

Summarising, all coefficients for both models were statistically significant at the p-

value < 0.001 (Table 5.30). Ct.Ar accounted for a higher R2 than Ct.Ar/Tt.Ar 

explaining around 31% of the variance of the response variable and providing a SEE 

of around 15 years; while 24% of the variance of age was explained in Model 7 with 

slightly lower prediction accuracy (15.6 years). Based on the lower prediction power 

of these two models, no further discussion will be held. 

The remaining models (Model 8, 9 and 10) include secondary osteon 

measurements as independent variables (Table 5.30). Among all the models, On.Ar 

produced the lower explanatory power (R2 = 0.40) and the highest AICc and BIC 

values (717 and 724, respectively). The model was statistically significant with 

F(1,86)= 58.36, p < 0.001. Standardised and unstandarised slopes for the 

independent variable were statistically significant (t = 19.17 and t = -7.64 at p < 

0.001, respectively). Independence of errors was not confirmed by statistics (DW = 

0.83) but it was suggested by visual examination of error independence scatter plot. 

Skewness and kurtosis fell within the acceptable range (-0.47 and 0.45) and normal 

distribution of the residual was confirmed through the analysis of unstandarised 

residuals (S-W = 0.97, df = 88, p = 0.15).  

Model 9 included On.Pm accounting for 45% of the variance in age (SEE = 

13.36); AICc and BIC values were the lowest among the three models that include 

secondary osteon measurement parameters. It presented a slope of the regression 

line statistically significantly different from zero (F(1,86) = 69.75, p < 0.001) with both 

standardised and unstandarised slopes  falling at the p < 0.001 level (t = 15.06 and t 

= -8.35, respectively) (Table 5.30). As seen in the previous model, the 

independence of errors was just under the expected level (DW = 0.94) with 

skewness (-0.49), and kurtosis (0.34) within the range. Unstandarised residuals 

were normally distributed (S-W = 0.979, df = 88, p = 0.17). 
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Model 10 (On.Cr as predictor) explained similar variance as On.Pm model 

(45%) and the regression slope was statistically different from zero (F (1,86) = 

69.10, p < 0.001). Standardised and unstandarised slopes were statistically 

significant (t = -7.32 and t = 8.31, respectively, p < 0.001). Independence of errors 

was violated according to D-W statistics (0.77), although studentised residual 

against predicted values plot did provide evidence of independence. Normality tests 

suggest normal distribution of residuals (S-W = 0.51, skewness = -0.03, kurtosis = 

0.91). 

The diagnostic plots for all models (Appendix B.7) suggest that the 

assumptions of residuals were met with 95% of the standardised residuals falling 

within ± 2. The cases identified as possible outliers were examined for standardised 

residuals, leverage and Cook’s distance values concluding that none of them were 

influential cases for the regression models. 

5.5.2. Multiple regression models 

The results for the multiple regression models are organised first with the 

models including OPD variables and secondary osteon measurements, and the 

remaining models only including secondary osteons measurements and rib area 

parameters. Sixteen models are presented in Table 5.32 and Table 5.34. Due to the 

large amount of data, only those models that showed a clear improvement in 

prediction accuracy rates and goodness of fit values compared to the univariate 

models will be presented in this section. Diagnostic plots for multiple linear models 

can be found in Appendix B.8. 

Five models were generated using OPD and secondary osteons 

measurements (Model 11 to Model 15). The first three models in Table 5.32 (Model 

11 to 13) include two independent variables. The prediction accuracy rates were 

fairly similar although a slightly higher SEE, lower multiple R2 and AICc and BIC 

values was obtained  by the combination of OPD and On.Ar (Model 11). The null 

hypothesis was rejected with all the models being statistically significant from zero, 

and all partial slope coefficients were shown to be statistically significant at < 0.001 

level. D-W statistics were within ±2 for the three models and independence of errors 

was further confirmed by standardised residuals and standardised predicted values 

scatter plots. While S-W test indicated non-normal distribution of unstandarised 

residuals (S-W = 0.966, df = 88, p = 0.022; S-W = 0.96, df = 88, p = 0.034; and S-W 
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= 0.97, df = 88, p = 0.040, Model 11, 12 and 13 respectively), skewness and 

kurtosis values were acceptable (-0.272 and 1.12; -0.33 and 1.05; 0.345 and 1.57, 

respectively). Multicollinearity between the independent variables was reviewed 

through the tolerance and variance inflation factor (VIF) values that fell within the 

limits of acceptance for the three models. However, the eigenvalues for all of them 

were close to zero (Model 11: OPD = 0.123, On.Ar = 0.02; Model 12: OPD = 0.10 

and On.Pm = 0.006; Model 13: OPD = 0.05, On.Cr = 0.002). Further analysis of the 

regression of OPD on the osteon measurement parameters resulted in R2 not higher 

than 0.35 suggesting that in aggregate multicollinearity was not a problem. 

Visual examination of residuals plots suggests the following assumptions. 

Linearity of residuals was assumed based on the random distribution of points in the 

residuals versus predicted values plot. Q-Q plots indicated relative normality with 

minor deviations at the tails (more pronounced for Model 11). Homogeneity of 

variance was confirmed, and a review of the case wise diagnosis based on Cook’s 

distance and Leverage values was indicative of no cases exerting influence on the 

models (refer to Appendix B.8).  
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Table 5.32 Summary of selected multiple models including OPD variables for the entire sample (best model fit and accuracy rates). 

 

*M= model, SE=standard error, SEE= standard error of the estimate, D-W=Durbin-Watson

N=88

Standarised 

Coefficients

B SE Beta Tolerance VIF

Regression 16144.02 2 8072.01 58.71 < 0.001 (Constant) 48.77 9.22 5.287 < 0.001

Residuals 11685.41 85 137.47 OPD 2.081 0.35 0.506 5.964 < 0.001

Total 27829.44 87 On.Ar -644.567 155.26 -0.352 -4.151 < 0.001

Regression 16815.23 2 8407.61 64.88 < 0.001 (Constant) 73.515 12.76 5.76 < 0.001

Residuals 11014.21 85 129.57 OPD 1.967 0.34 0.478 5.794 < 0.001

Total 27829.44 87 On.Pm -68.866 14.21 -0.400 -4.844 < 0.001

Regression 16900.43 2 8450.21 65.72 < 0.001 (Constant) -274.568 59.03 -4.651 < 0.001

Residuals 10929 85 128.57 OPD 1.982 0.33 0.482 5.917 < 0.001

Total 27829.44 87 On.Cr 334.353 67.81 0.402 4.93 < 0.001

Regression 17925.26 3 5975.08 50.67 < 0.001 (Constant) -193.379 62.88 -3.075 0.003

Residuals 9904.17 84 117.90 OPD 1.599 0.34 0.389 4.62 < 0.001 0.598 1.673

Total 27829.44 87 On.Ar -449.111 152.33 -0.245 -2.948 < 0.001 0.611 1.636

On.Cr 267.398 68.79 0.321 3.887 < 0.001 0.62 1.612

Regression 18194.45 3 6064.81 52.87 < 0.001 (Constant) -153.132 66.45 -2.304 0.024

Residuals 9634.98 84 114.70 OPD 1.577 0.34 0.383 4.656 < 0.001 0.608 1.646

Total 27829.44 87 On.Pm -48.909 14.56 -0.284 -3.359 0.001 0.576 1.735

On.Cr 241.791 69.72 0.29 3.468 0.001 0.587 1.703

Regression 17955.64 2 8977.82 77.28 < 0.001 (Constant) 49.465 7.45 6.639 < 0.001

Residuals 9873.8 85 116.16 OPD(F) 4.116 0.542 0.62 7.596 < 0.001 0.626 1.597

Total 27829.44 87 On.Ar -469.546 149.40 -0.257 -3.143 0.002 0.626 1.597

Regression 18333.81 2 9166.90 82.05 < 0.001 (Constant) 68.487 11.34 6.038 < 0.001

Residuals 9495.63 85 111.71 OPD(F) 3.909 0.539 0.589 7.248 < 0.001 0.608 1.645

Total 27829.44 87 On.Pm -51.715 13.99 -0.300 -3.695 < 0.001 0.608 1.645

Regression 18545.24 2 9272.62 84.89 < 0.001 (Constant) -201.271 57.54 -3.498 0.001

Residuals 9284.19 85 109.22 OPD(F) 3.907 0.521 0.589 7.502 < 0.001 0.637 1.569

Total 27829.44 87 On.Cr 260.484 65.32 0.313 3.988 < 0.001 0.637 1.569

Regression 19101.96 3 6367.32 61.28 < 0.001 (Constant) -149.78 60.38 -2.48 0.015

Residuals 8727.48 84 103.89 OPD(F) 3.35 0.562 0.505 5.962 0.001 0.521 1.921

Total 27829.44 87 On.Ar -339.413 146.62 -0.186 -2.315 0.023 0.581 1.72

On.Cr 219.594 66.11 0.264 3.322 0.001 0.592 1.69

Regression 19262.82 3 6420.94 62.96 < 0.001 (Constant) -120.205 63.45 -1.894 0.062

Residuals 8566.62 84 101.98 OPD(F) 3.281 0.56 0.494 5.904 < 0.001 0.523 1.914

Total 27829.44 87 On.Pm -37.581 14.16 -0.218 -2.653 0.01 0.541 1.847

On.Cr 201.846 66.87 0.242 3.018 0.003 0.568 1.762

1.28 673.7 685.3

10.85 1.25 676.1 687.8

1.33 663.3 675.1

10.2 1.31 664.9 676.6

10.56 1.25 670.2 679.6

M20
OPD(F)+On.Pm

+ On.Cr
0.83 0.69 0.68 10.10

1.34 668.2 677.6

M19
OPD(F)+On.Ar+ 

On.Cr
0.83 0.69 0.67

M18 OPD(F)+On.Cr 0.82 0.67 0.66 10.45

1.22 673.6 683

M17 OPD(F)+On.Pm 0.81 0.66 0.65

M16 OPD(F)+On.Ar 0.80 0.64 0.64 10.7

M15
OPD+On.Pm+ 

On.Cr
0.81 0.65 0.64 10.71

1.21 682.5 691.9

M14
OPD+On.Ar+  

On.Cr
0.80 0.64 0.63

0.696 1.437

M13 OPD+On.Cr 0.78 0.61 0.59 11.34

697.8

M12 OPD+On.Pm 0.78 0.60 0.59 11.38 1.21 683.2 692.6

0.686 1.458

0.683 1.464

M11 OPD+On.Ar 0.76 0.58 0.57 11.72 1.14 688.4

Collinearity Diagnosis
R R²

Adj.             

R²
SEE D-WF value Pr > F

Unstandarised 

Coefficients T-Value Pr>│t│

ANOVA Parameters Estimates Model Summary Goodness of fit

Model Variables
Sum of 

Squares
df

Mean 

Square
AICc BIC
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A third variable (On.Cr) was added to previous Models 11 and 12 in order to 

examine whether a better fit of the data was obtained. The results provided by 

Model 14 and Model 15 demonstrated a very similar outcome. The combination of 

OPD, On.Pm and On.Cr (Model 15) produced a slightly higher multiple R2 and 

prediction accuracy (multiple R2 = 0.64, SEE = 10.71) than Model 14. Hierarchical 

regression indicated that the addition of On.Cr improved prediction with R2-change 

of 0.05 (F change = 12.02, p = 0.001). The smallest AICc and BIC values were 

produced for Model 15. As seen in Table 5.32, F-values, unstandarised and 

standardised partial slopes for the three variables regression models are similar and 

statistically significant. Model 14 and Model 15 statistical tests suggest normality of 

the residuals (SW = 0.98, df = 88, p = 0.243, skewness = -0.169, kurtosis = 1.18; 

and SW = 0.98, df = 88,p = 0.317, skewness = -0.229, kurtosis = 1.04, respectively). 

Tolerance and VIF values indicated that multicollinearity was not an issue. However, 

eigenvalues for On.Cr as the third parameter were close to zero for both cases with 

a condition index of more than 30; the redundant inclusion of both area and 

perimeter in the calculation of On.Cr may be the reason. A review of regression of 

all the possible combinations for Model 14 and for Model 15 indicated that none of 

the R2 obtained were higher than 0.45.  Comparing diagnostic plots for each model, 

assumptions of normality, linearity, normality, equal variances and non-influential 

cases were reasonably met. 

First, four different multiple linear models were generated combining OPD(F) 

and secondary osteon measurements. Simple regression results previously 

demonstrated that OPD(F) models were better fitted by curvilinear regression. In 

summary, a general decrease in AICc and BIC values in comparison to the models 

that included OPD was observed.  

Model 16, 17 and 18 include two predictors each. All the models rejected the 

null hypothesis and reported standardised and unstandarised partial coefficients that 

were statistically significant (Table 5.32). Overall, independence of errors was 

reasonably met as assessed by D-W statistics and visual examination of scatter 

plots. Normal distribution of the residuals was confirmed by skewness and kurtosis 

(-0.269 and 0.513; 0.306 and 0.534; and -0.012 and 0.558, Model 16, 17 and 18, 

respectively). This assumption was further confirmed by S-W test normality test (S-

W, p = 0.68, p = 0.57, p = 0.96, respectively). Statistics reported for tolerance and 

VIF values indicated that multicollinearity was not an issue and although 
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eigenvalues for the second predictor were close to zero (as with the previous 

models), the condition indices and the regression of all possible combination of 

independent parameters suggested non-collinearity.  

As seen in Table 5.32, Model 19 and Model 20 performed very similarly with 

slightly higher explanatory power and better goodness of fit given by Model 20 with 

the combination of OPD(F), On.Pm and On.Cr. Unstandarised and standardised 

partial slopes for the three variables were reported to be significant for both models 

(note the intercept for Model 20 is not statistically significant (t = -1.89, p = 0.062). 

Model 19 and Model 20 independence of errors was confirmed by D-W statistics 

and statistical tests suggesting normality of the residuals (SW = 0.99, df = 88, p = 

0.809, skewness = -0.169, kurtosis = 1.18; SW = 0.991, df = 88, p = 0.785, 

skewness = -0.317, kurtosis = 0.472, respectively). Looking at multicollinearity 

diagnosis for Model 19 and 20, tolerance and VIF values suggested that 

multicollinearity was not an issue; however, further assessment of a third variable 

(On.Cr) included in either of the two models suggest that a third predictor may cause 

some collinearity problems. Regression of all the possible combinations for Model 

19 and for Model 20 resulted in multiple R2 lower than 0.90. Comparing diagnostic 

plots for each model, assumption of normality, linearity, equal variances and non-

influential cases were reasonable met. 

In all the five models (Models 16 to 20), a certain curvilinear pattern was 

observed in the trend lines. It suggests that the linear model might not be the best fit 

to the data with non-linear relationships between dependent and independent 

variables not being totally explained by the linear model (see Univariate Models 

section for OPD(F) and  Appendix B.8). 

 Curvilinear regression was conducted using hierarchical multiple regression 

analysis to test whether an increase in explanatory power is observed. Results for 

curvilinear regression models are summarised in Table 5.33.  All the curvilinear 

models produced multiple R2 and F-statistics changes that were statistically 

significant (p < 0.05) indicating that the curvilinear effect improves prediction to 

different degrees. Multicollinearity seemed to be an issue with tolerance around 0.05 

and VIF values higher than the threshold of 10, which for these models was 

expected due to the correlation between the OPD(F) variable included twice in the 

equation. The examination of the diagnostic plots suggested that the assumptions 

for regression analysis were met. Furthermore, the curvilinear trend lines observed 
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in the multiple linear models show a fairly horizontal pattern with residual equally 

spread along the range of values. 

Table 5.33 Summary table of curvilinear models for OPD(F) and osteons 

measurements as independent variables. 

Quadratic 
Models 

F  R R2 SEE AICC BIC D-W Quadratic regression equation 

Model 16  57.62 0.82 0.67 10.41 668.7 680.3 1.23 
Age=33.132+8.911(OPD(F)-

401.271(On.Ar)-0.342(OPD(F)2) 

Model 17 60.71 0.83 0.68 10.23 665.5 677.2 1.27 
Age=50.724+8.525(OPD(F)-

45.233(On.Pm)-0.329(OPD(F)2) 

Model 18 63.12 0.83 0.69 10.09 663.2 674.8 1.29 
Age=- 

190.406+8.545(OPD(F)+233.56
8(On.Cr)-0.332(OPD(F)2) 

Model 19 50.10 0.84 0.71 9.91 661.3 675.1 1.31 
Age=-147.369+7.586(OPD(F)-

201.328(On.Ar)+201.328(On.Cr)
-0.298(OPD(F)2) 

Model 20 51.35 0.84 0.71 9.82 668.7 673.6 1.33 
Age=-120.593+7.44(OPD(F)-

32.967(On.Pm)+185.352(On.Cr)
-0.293(OPD(F)2) 

SEE= standard error of the estimate, D-W= Durbin-Watson 

The last set of multiple models for the entire sample includes 

histomorphometric variables that are related to rib area and secondary osteons 

measurements and shape. Six models were generated. As seen in Table 5.34, the 

combination of osteon measurements with Ct.Ar/Tt.Ar was redundant as 

demonstrated by the p-value produced by the inclusion of the last variable into the 

equation. Only the model that demonstrated an improvement in goodness of fit (R2, 

SEE, AICc and BIC) in comparison to the simple linear models will be discussed 

here. Diagnostic plots for the best two models (Model 25 and 26) can be consulted 

in Appendix B.8.  

Model 25 (On.Cr and Ct.Ar) explained a significant amount of the variance in 

age (58%) with a SEE of 11.72 years (F (2.85) = 58.73, p < 0.001). AICc and BIC 

values were the smallest among these models. Standardised and unstandarised 

partial coefficients for On.Cr and Ct.Ar were statistically significant at the p < 0.001 

level (t = 7.387and t = -5.22, respectively). D-W statistics (1.28) indicated 

independence of errors and test statistics suggested normal distribution of the 

residuals (S-W = 0.98 df = 88, p = 0.308; skewness = -0.328; kurtosis = 0.917). 

Although the eigenvalues for the second variable were close to zero and exceeding 
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the condition index threshold, further review of On.Cr regressed on Ct.Ar produced 

multiple R2 of 0.087 providing no further evidence of multicollinearity issues. No 

regression influential cases were identified and the assumptions were reasonably 

met. 
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Table 5.34 Multiple Regression Models for rib area and osteons measurements variables for the entire sample. 

 
*M= model, SE=standard error, SEE= standard error of the estimate, D-W=Durbin-Watson, in bold p > 0.05 

N=88

Standarised 

Coefficients

B SE Beta Tolerance VIF

Regression 12501.41 2 6250.70 34.66 < 0.001 (Constant) 99.409 4.97 20.01 < 0.001

Residuals 15328.02 85 180.33 On.Ar -862.451 186.53 -0.471 -4.62 < 0.001 0.623 1.604

Total 27829.44 87 Ct.Ar -.601 0.23 -0.268 -2.63 0.010 0.623 1.604

Regression 11766.92 2 5883.46 31.13 < 0.001 (Constant) 99.413 5.16 19.239 < 0.001

Residuals 16062.51 85 188.97 On.Ar -969.984 191.13 -0.53 -5.075 < 0.001 0.622 1.607

Total 27829.44 87 Ct.Ar/Tt.Ar -25.231 15.32 -0.17 -1.647 0.103 0.622 1.607

Regression 13390.22 2 6695.11 39.41 < 0.001 (Constant) 127.576 8.95 14.245 < 0.001

Residuals 14439.21 85 169.87 O.Pm -90.503 17.13 -0.53 -5.284 < 0.001 0.617 1.621

Total 27829.44 87 Ct.Ar -.52 0.22 -0.23 -2.334 0.022 0.617 1.621

Regression 12758.03 2 6379.01 35.97 < 0.001 (Constant) 130.491 9.06 14.4 < 0.001

Residuals 15071.41 85 177.31 O.Pm -101.117 17.59 -0.59 -5.748 < 0.001 0.61 1.638

Total 27829.44 87 Ct.Ar/Tt.Ar -19.269 14.97 -0.131 -1.287 0.202 0.61 1.638

Regression 16146.31 2 8073.15 58.73 < 0.001 (Constant) -337.07 57.14 -5.899 < 0.001

Residuals 11683.12 85 137.44 On.Cr 454.948 61.59 0.55 7.387 < 0.001 0.902 1.109

Total 27829.44 87 Ct.Ar -.866 0.16 -0.386 -5.222 < 0.001 0.902 1.109

Regression 14082.16 2 7041.08 43.53 < 0.001 (Constant) -348.847 65.04 -5.363 < 0.001

Residuals 13747.27 85 161.73 On.Cr 463.584 69.56 0.56 6.664 < 0.001 0.832 1.202

Total 27829.44 87 Ct.Ar/Tt.Ar -39.534 12.25 -0.27 -3.226 0.002 0.832 1.202

12.72 1.15 702.7 712.1

1.38 688.4 697.8

M26
On.Cr+  

Ct.Ar/Tt.Ar
0.71 0.51 0.49

M25 On.Cr+Ct.Ar 0.76 0.58 0.57 11.72

13.32 1.12 710.8 720.2

1.13 707.1 716.5

M24
On.Pm+ 

Ct.Ar/Tt.Ar
0.68 0.46 0.45

716.4 725.8

M23 On.Pm+Ct.Ar 0.69 0.48 0.47 13.03

724.1

M22 On.Ar+ Ct.Ar/Tt.Ar 0.65 0.42 0.41 13.74 1.14

AICc BIC

M21  On.Ar+Ct.Ar 0.67 0.45 0.44 13.42 1.12 716.9

Collinearity Diagnosis
R R²

Adj.             

R²
SEE D-WF value Pr > F

Unstandarised 

Coefficients T-Value Pr>│t│

ANOVA Parameters Estimates Model Summary Goodness of fit

Model Variables
Sum of 

Squares
df

Mean 

Square
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5.5.3. GLM separated by groups 

5.5.3.1. GLM for sex 

The grouping variable, sex, was transformed into a dummy variable (Male = 0, 

Female = 1) to determine whether the inclusion of sex in the regression models 

improved the prediction accuracy.  

First, all the histological variables were combined with the sex grouping 

variable. The regression analysis indicated that the single histological variables for 

the entire dataset performed more accurately than the combination of the 

histological variable and sex, as assessed by the non-statistical significance of sex 

for any of the models (p-value > 0.05). Hierarchical linear regression indicated than 

the only slight improvement from the univariate model was obtained for Ct.Ar and 

sexes (see Appendix B.9 and Table 5.30 for Model 6 values). Due to the little 

improvement observed, no further analysis of residuals was performed on this 

model. 

Multiple hierarchical regression was performed to examine whether the 

inclusion of sex as a categorical variable improved the previous multiple models built 

for the entire sample (refer to Table 5.32 and Table 5.34). No increment in multiple 

R2 was observed for any of the new generated models. Additionally no statistical 

significance was reported for the incorporation of the categorical variable. 

Further exploration of possible regression formulae for sex specific datasets 

including only histological variables was performed. Only the equations that 

provided a clear improvement in prediction accuracy based on indicators as R2, 

SEE, AICc and BIC values are reported and discussed. Multiple linear regression 

and stepwise multiple linear regression were used to obtained the most accurate 

combination of variables for each sex. The results are presented in Table 5.35. 

Diagnostic plots can be consulted in Appendix B.10. 

As seen in Table 5.35, the null hypothesis was rejected at the p < 0.001 level 

for the best three models generated for males (Model 27, 28 and 29). Between 43% 

and 63% of the variance in age can be explained by these models with SEE ranging 

from 10 to 12 years. All the standardised and unstandarised (partial) slopes were 

significantly different from zero. The lowest AICc and BIC values were reported for 

Model 29. Independence of errors seemed to be an issue for model 28 (D-W= 0.89); 
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however, inspection of standardised residuals versus standardised predicted values 

provided a random display of point falling within ± 3. Model 27 presented non-

normality of residuals through the pattern observed in the Q-Q plot and confirmed by 

S-W test (S-W = 0.943, df = 40, p = 0.045). However, other indicators suggested 

reasonable normality (skewness (-0.297) and kurtosis (1.734)). Assumption of 

equality of variance appeared constant although a deviation around 50 year was 

observed. Unstandarised residuals normality was confirmed for the remaining Model 

27 and 29 (S-W p-value > 0.05; skewness and kurtosis: -0.393 and 0.642, 0.714 

and 1.4, respectively).  

Curvilinear regression analysis was performed on OPD equation (Model 27). 

The quadratic model for OPD statistically significantly predicts age in the male 

sample (F(1,38) = 21.50, p < 0.001; multiple R2 = 0.51, SEE = 11.54; AIC = 315.19, 

BIC = 320.81). Standardised and unstandarised partial slope coefficients for OPD 

squared (t = -1.366, p = 0.180) suggests that the inclusion of this variable into the 

model is redundant. The assumption of normality of residuals was corrected by the 

curvilinear model (S-W = 0.925, df = 40, p = 0.086) and the remaining assumption 

were also reasonably met. The quadratic equation is as follows:  

Age = -19.957 + 7.340 (OPD) – 0.131(OPD2) 

Weighted least squares regression explores the correction of 

heteroscedasticity observed in Model 27. The new model produced an R2 of 0.58 

(F(1,38)= 54.43, p < 0.001). Unstandarised and standardised coefficients are 

statistically significant (t = 3.10, p = 0.004, t = 7.38, p < 0.001) providing the 

following formulae: 

     Age = 19.94 + 2.06(OPD) 
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Table 5.35 Summary of selected simple and multiple regression models for males and females. 

 

*M= model, SE=standard error, SEE= standard error of the estimate, D-W=Durbin-Watson

Males Females

Standarised 

Coefficients

B SE Beta Tolerance VIF

Regression 5478.40 1 5478.40 40.226 < 0.001 (Constant) 15.15 7.323 2.070 0.045

Residuals 5175.19 38 136.18 OPD 2.904 0.458 0.717 6.342 < 0.001

Total 10653.60 39

Regression 4762.47 1 4762.47 30.72 < 0.001 (Constant) -402.715 83.52 -4821 < 0.001

Residuals 5891.12 38 155.02 On.Cr 507.025 91.47 0.669 5543 < 0.001

Total 10653.60 39

Regression 6692.97 2 3346.48 31.26 < 0.001 (Constant) -247.98 78.388 -3.3164 0.003

Residuals 3960.62 37 1070.44 OPD 2.04 0.48 0.504 4.247 < 0.001

Total 10653.6 39 On.Cr 302.931 89.932 0.399 3.368 0.002 0.71 1.40

Regression 11686.65 1 11686.65 98 < 0.001 (Constant) 23.511 4.05 5.795 < 0.001

Residuals 5485.32 46 11.924 OPD(F) 5.753 0.58 0.825 9.900 < 0.001

Total 17171.97 47

Regression 9248.99 1 9248.99 53.69 < 0.001 (Constant) 95.428 5.13 18.615 < 0.001

Residuals 7922.98 46 172.23 Ct.Ar -1.984 0.27 -0.734 -7.328 < 0.001

Total 17171.97 47

Regression 11055.76 2 5527.88 40.67 < 0.001 (Constant) 128.742 10.21 12.61 < 0.001

Residuals 6116.21 45 135.91 On.Pm -74.338 20.39 -0.43 -3.646 0.001

Total 17171.97 47 Ct.Ar -1.220 0.32 -.0451 -3.823 < 0.001 0.56 1.76

Regression 11960.07 2 5980.038 51.63 < 0.001 (Constant) -276.939 77.08 -3.593 0.001

Residuals 5211.90 45 115.82 On.Cr 399.886 82.65 0.443 4.838 < 0.001

Total 17171.97 47 Ct.Ar -1.453 0.25 -0.537 -5.866 < 0.001 0.84 1.24

Regression 13585.87 2 6792.93 85.24 < 0.001 (Constant) 52.44 6.79 7722 < 0.001

Residuals 3586.1 45 79.69 OPD(F) 4.21 0.57 0.604 7377 < 0.001

Total 17171.97 47 Ct.Ar -1.080 0.22 -0.399 -4,882 < 0.001 0.69 1.44

Goodness of fit

AICc BIC

Collinearity 

Diagnosis

Model Summary

T-Value Pr>│t│

ANOVA Parameters Estimates

Model Variables
Sum of 

Squares
df

Mean 

Square

M28 On.Cr 0.67 0.45

D-W

M27 OPD 0.72 0.51 0.51 11.70 1.22 314.7 319.1

R R²
Adj.             

R²
SEEF value Pr > F

Unstandarised 

Coefficients

0.43 12.45 0.89 319.8 324.3

M30 OPD(F) 0.82 0.68 0.67

M29 OPD + On.Cr 0.79 0.63 0.61

10.90 1.32 370.2 375.3

1.30 306.5 312.110.35

M33 On.Cr+Ct.Ar 0.83 0.69 0.68

1.19 387.9 392.9

M32 On.Pm+Ct.Ar 0.80 0.64 0.63

M31 Ct.Ar 0.73 0.54 0.53 13.12

10.76 1.47 370.1 376.7

11.65 1.25 377.8 384.4

1.42 352.2 358.7M34 OPD(F)+Ct.Ar 0.89 0.79 0.78 8.93
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 The female sub-dataset was used for the generation of sex specific formulae 

(Table 5.35). Two simple linear models and three multiple linear models were 

generated. For the models including just one single predictor, OPD(F) produces the 

highest R2 and lowest AICc and BIC values. Independence of errors and normality of 

standardised residuals assumption were met for both Model 30 and 31 (S-W p-value 

> 0.05; skewness and kurtosis 0.469 and 0.761, -0.154 and 1.09, respectively). 

Visual examination of diagnostic plots suggested a slight curvilinear trend for Model 

30. The quadratic regression model statistically significantly predicted age in the 

female sample (F(1,46) = 52.05, p < 0.001; multiple R2  = 0.685, SEE = 10.73; AIC = 

369.87, BIC = 376.43). Beta standardised and unstandarised partial slope 

coefficients for OPD and OPD squared suggest that OPD(F)2 was not statistically 

significant (t=4.231, p <  0.001 and t = -1.621, p = 0.112, respectively). The 

diagnostic plots indicate that regression assumptions were met and a correction of 

the curvilinear pattern was observed indicating more approximate equality of 

variances. The quadratic equation is as follows:  

Age = 14.09 + 9.275(OPD(F)) – 0.271(OPD(F)2) 

Three multivariate models produced the highest prediction accuracy for the 

female sample. Among them, stepwise regression analysis selected as the best 

combination of variables for females OPD(F) and Ct.Ar (Model 34) (Table 5.35). 

This model explains 79% of the variance in age with a standard error of the estimate 

of 9 year from real age. Multicollinearity was not an issue based on tolerance and 

VIF values (0.693 and 1.443 respectively). Independence of residuals assumption 

was met (DW = 1.42) and statistics test indicated that residuals were normally 

distributed (S-W = 0.96, df = 48, p = 0.117). A curvilinear pattern in the trend line 

was observed in the scale-location plot suggesting issues in the equality of 

variances. The possibility of correcting the curvilinear pattern by performing 

quadratic regression was not recommended due to the sample size and the impact 

of adding a third variable into the model.  

For the remaining models (Model 31,32 and 33), the null hypothesis was 

rejected at the p < 0.001 level and they all met the regression assumptions 

(Appendix B.10). 
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5.5.3.2. GLM for samples 

The grouping variable sample was transformed into a dummy variable (Crete 

= 0, Cyprus = 1) in order to include it as a categorical variable in the regression 

equations. Multiple linear regression models were built with single histological 

variables and sample, as well as for the combination of several histological variables 

and sample as predictors. 

For all the models, a decrease in the prediction was observed when combining 

the continuous and the categorical predictors, except for Ct.Ar, Cr.Ar/Tt.Ar, On.Ar 

and On.Pm (refer to Appendix B.9).  Although the categorical variable as well as F-

statistics change were statistically significant for all the new generated models, the 

combination of sample, secondary osteon measurements and Ct.Ar/Tt.Ar makes this 

last predictor to become non-statistically significant. Based on the little improvement 

provided by the inclusion of sample as a categorical predictor, no further analysis of 

residuals will be performed on the models. 

The entire dataset was divided into two sub-datasets (Cretans and Cypriots) to 

examine whether regression models performed better if only histological predictors 

are considered for each sample. Only simple and multiple regression models that 

produced an improvement in goodness of fit values (R2 and SEE, AICc and BIC) in 

comparison to the models generated using the entire database are reported. 

Simple linear models were built for the Cretan sample testing each histological 

variable and age. None of the models improved the results from the previous 

regression analysis. Multiple regression analysis was run for all possible 

combinations of histological parameters and age. The multiple regression models 

did not show higher prediction accuracy rates indicating that a general formula can 

be better used for Cretans. 

The Cypriot sub-dataset was used to generate simple and multiple regression 

equations. Most of the simple and multiple regression models resulted in an 

improvement of prediction accuracy in comparison to the regression models 

generated from the entire database. Only the two best models are discussed here 

although all models summary statistics can be seen in Table 5.36. Diagnostic plots 

are presented in Appendix B.11.  
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All the simple linear regression models generated rejected the null hypothesis 

(Table 5.36). The highest R2, and the lowest SEE, AICc and BIC values are 

obtained by model 35 (OPD(F)). The second best model according to the goodness 

of fit values was Model 38, which includes On.Pm as a single predictor. 

Independence of errors indicated acceptable values and was further confirmed by 

standardised residuals against standardised predicted values scatter plots. 

Normality test suggested non-violation of normality for unstandarised residuals for 

all models (S-W p-value > 0.05) and reasonable values for skewness and kurtosis 

(Model 35: 0.192 and 1.18, and Model 38: =-0.145 and 1.03, respectively). 

As seen for Model 35, the diagnostic plots indicated a random distribution of 

the residuals although a slope was observed in the trend line. A curvilinear pattern in 

the distribution of the residuals along the predictor ranges was again observed 

suggesting certain violation of homoscedasticity (Appendix B.11). Curvilinear 

regression was performed with the inclusion of OPD(F)2  in the equation being not 

statistically significant (F change p = 0.079) although the null hypothesis was 

rejected (F (2,44)= 45.38, p value < 0.001) with multiple R2 was slightly higher that 

with the single model (0.67). The curvilinear pattern previously seen was slightly 

corrected; however, the curvilinear trend line was still observed indicating that 

certain heteroscedasticity was present in the model. The transformation of the 

dependent variable (LnAge) was tested to examine whether a correction of the trend 

line pattern was possible but no improvement was achieved. Weighted least 

squared regression was performed to correct heteroscedasticity of the residuals 

obtaining a statistically significant model (F (1,45)=89.57, p < 0.001, R2 = 0.66); the 

following regression equation for OPD(F): 

Age= 29.689 + 4.870 (OPD(F)) 

Three multiple regression models are reported based on the multiple R2 and 

goodness of fit values produced (Table 5.36). Stepwise regression selected as the 

most suitable combination of variables OPD(F) and On.Pm which predicted age with 

a SEE of 7.7 years and a multiple R2 of 0.72. Among all the multiple models 

developed from the Cypriots dataset, Model 39 provided the smallest AICc and BIC 

values followed by the model including OPD and On.Pm (Model 40) (Table 5.36). 

No violation of independence of errors and normality of unstandarised residuals was 

suggested by statistical tests for the three models (S-W p > 0.05; skewness and 

kurtosis being Model 39: 0.62 and .91, Model 40 = 0.28 and 1.35, Model 41: 0.28 
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and 0.12). Multicollinearity was examined through tolerance and VIF values for all 

models, and regression was carried out on all possible combinations of variables 

obtaining multiple R2 less than 0.50; hence, collinearity might not be an issue. 

Diagnostic plots indicated no potential violation of regression assumptions. This 

statement applies for all the models generated for Cypriots. 

As a general trend, for most of the formulae developed from the Cypriot 

database, case 1 (20-year-old) was identified as a possible outlier. For all the 

selected models, this case was examined closely through the standardised residual, 

studentised residuals, Cook´s distance and Leverage values. After considering 

these values as an aggregate, this case was not considered a regression outlier that 

could influence the coefficients values and/or the prediction accuracy of the 

formulae. Moreover, simple and multiple regression was performed on the database 

excluding case 1, and predicted response, slope coefficients and hypothesis test 

results were not affected by this case suggesting its inclusion to generate the 

regression formulae.  
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Table 5.36 Selected simple and multiple regression models for Cypriots. 

 
*M= model, SE=standard error, SEE= standard error of the estimate, D-W=Durbin-Watson

Cyprus

Standarised 

Coefficients

B SE Beta Tolerance VIF

Regression 6027.69 1 6027.69 83.36 < 0.001 (Constant) 32.66 3.52 9.26 < 0.001

Residuals 3253.58 45 72.302 OPD(F) 4.417 0.484 0.806 9.131 < 0.001

Total 9281.27 46

Regression 5004.88 1 5004.69 52.66 < 0.001 (Constant) 21.36 5.88 3.629 < 0.001

Residuals 4276.38 45 95.03 OPD 2.549 0.35 0.734 7.257 < 0.001 0.73 0.54 0.53 9.75 1.10 351.9 356.9

Total 9281.38 46

Regression 3890.26 1 3890.26 32.47 < 0.001 (Constant) 89.238 4.90 18.19 < 0.001

Residuals 5391.01 45 119.8 Ct.Ar/Tt.Ar -80.95 14.21 -0.647 -5.69 < 0.001

Total 9281.27 46

Regression 531.215 1 5312.15 60.22 < 0.001 (Constant) 136.234 9.56 14.25 < 0.001

Residuals 3969.11 45 88.20 On.Pm -113.681 14.64 -0.757 -7.761 < 0.001

Total 9281.27 46

Regression 6677.58 2 33.387 56.42 < 0.001 (Constant) 78.819 14.28 5.51 < 0.001

Residuals 260.369 44 59.17 OPD(F) 2.97 0.618 0.542 4.80 < 0.001

Total 9281.27 46 On.Pm -56.171 16.95 -0.374 -3.314 < 0.001 0.51 1.99

Regression 6410.16 2 3205.08 49.12 < 0.001 (Constant) 85.982 14.75 5.828 < 0.001

Residuals 2871.09 44 65.25 OPD 1.507 0.367 0.434 4.102 < 0.001

Total 9281.27 46 On.Pm -73.831 15.91 -0.491 -4.641 < 0.001 0.63 1.59

Regression 5977.45 2 2988.73 39.80 < 0.001 (Constant) 131.744 8.94 14.722 < 0.001

Residuals 3303.82 44 75.08 On.Pm -86.248 16.35 -0.574 -5.272 < 0.001

Total 9281.28 46 Ct.Ar/Tt.Ar -40.518 13.61 -0.324 -2.977 0.005 0.68 1.46

M41
On.Pm+             

Ct.Ar/Tt.Ar
0.80 0.64 0.63 1.22 341.2 348.68.66

1.21 331 337.57.69

8.10 1.20 335.6 342

0.85 0.72 0.71

M40  OPD+On.Pm 0.83 0.69 0.68

.99 362.8 367.810.95

9.40 1.22 348.4 353.4

0.65 0.42 0.41

M38 On.Pm 0.76 0.57 0.56

BIC

M35 OPD(F) 0.81 0.65 0.64 8.50 1.10 339.1 344.1

R R²
Adj.               

R²
SEE D-W AICc

ANOVA Parameters Estimates Model Summary

Mean 

Square

Collinearity 

DiagnosisF value Pr > F

Unstandarised 

Coefficients T-Value

Goodness of fit

Model Variables
Sum of 

Squares
df Pr>│t│

M36  OPD

M37  Ct.Ar/Tt.Ar

M39
OPD(F)+                

On.Pm
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5.5.4. Summary of best regression formulae:  model selection 

As described in the previous chapter (section 4.2.4.5), several indicators of 

goodness of fit were used as a means of model selection. R2 corresponds to an 

expression of the best fit of the line to the data representing the proportion of the 

variance in the dependent variable that is expressed by the regression model (Zar, 

2010). Standard error of the estimates (SEE) is a measure of how accurate the 

predictions made through a specific model are. Two parsimony indicators are also 

computed. AICc is preferred in this study as it comprises a correction of AIC in 

relation to sample size and it is assessed to evaluate which is the best model based 

on prediction power (Hurvich and Tsai, 1989). BIC values for each model are also 

reported to examine which model adjusts the best to the data (Aho et al., 2014). 

Table 5.37 presents a summary of the selection of the best models generated 

in this study based on the aforementioned values. The nature of the parameters was 

considered (i.e. formulae including densities versus formulae including metric 

parameters) and both simple and multiple models were included. Moreover, the 

reliability of the variables was also taken into account (i.e. OPD(F) demonstrated 

high inter-observer error). Issues concerning the repeatability and practical 

application of the models will be fully discussed in the next chapter. 
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Table 5.37 Summary of the best models generated based on entire dataset and sub-data sets. 

 
Model / variable Formula R² SEE AICc BIC 

Entire 
sample 

Model 5 OPD Age = 15.66 + 2.893(OPD) 0.49 12.78 702.50 709.62 

Model 9 On.Pm Age = 133.224  – 115.24(On.Pm) 0.45 13.36 710.30 717.47 

Model 13 OPD, On.Cr Age = -274.568 + 1.982(OPD) + 334.535(On.Cr)  0.61 10.45 668.18 677.61 

Model 15 
OPD, On.Pm, 

On.Cr 
Age = -153.132 + 1.577(OPD) – 48.909(On.Pm) + 241.791(On.Cr) 0.65 10.71 673.69 685.35 

Model 25 On.Cr, Ct.Ar Age = -337.948 + 454.948(On.Cr) – 0.866(Ct.Ar)  0.58 11.72 688.40 697.83 

Males Model 29 OPD, On.Cr Age = -247.98 + 2.04(OPD) + 302.931(On.Cr)  0.63 10.35 306.47 312.10 

Females 
Model 32 On.Pm, Ct.Ar Age = 128.742 – 74.338(On.Pm) – 1.220(Ct.Ar) 0.64 11.65 377.14 384.38 

Model 33 On.Cr, Ct.Ar Age = -276.939  – 399.886(On.Cr) – 1.453(Ct.Ar) 0.69 10.76 370.14 376.70 

Cyprus 

Model 36 OPD Age = 21.36 + 2.549(OPD)  0.54 9.75 351.94 356.93 

Model 38 On.Pm Age = 136.234  – 113.681(On.Pm) 0.57 9.40 348.61 353.43 

Model 40 OPD, On.Pm Age = 85.982 + 1.507(OPD) – 73.831(On.Pm) 0.69 8.10 335.61 342.05 

Model 41 
On.Pm, 

Ct.Ar/Tt.Ar 
Age = 131.744 – 86.248(On.Pm) – 40.518(Ct.Ar/Tt.Ar) 0.64 8.66 341.20 348.65 

SEE= standard error of the estimate 
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The prediction equations are used as follows: if an individual from 

Mediterranean origin is found and the histological variables OPD (20.50) and On.Cr 

(0.913) are assessed, these values would be inserted in Model 13 (as an example) 

and age would be estimated in the following manner: 

Age = -274.568 + 1.982(20.50) + 334.535(0.913) 

Age = 71.49 

The estimated age is 71.49 years with a range of 61 to 81 years since the 

SEE for the generated model is roughly 10 years. 

5.6. Thin-section preparation methodologies comparison 

A qualitative assessment of the thin-sections produced by methodology A and 

methodology B was done to test whether both histological techniques produced thin-

section of similar quality. As seen in Figure 5.13, the histological features are 

equally observable under 4×, 10× and 40× magnification on microphotographs 

obtained by each method (both transmitted and polarised light microscopy). The 

only minor drawback that was noticed when using the revised method consisted of 

blurred areas appearing on the thin-section due to water penetrating the space 

between the thin-section and the glass slides. The application of a larger quantity of 

resin in the mounting procedure seemed to solve this technical issue.  
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Figure 5.13 Study sample 

examples of four 

microphotographs taken with a 

research microscope (Leica 

DM750P equipped with a Leica 

MC170 HD camera). A (40×) and 

B (100×): rib sections processed 

using methodology A.  C (40×) 

and D (100×):  ribs sections 

processed applying the revised 

method (under semi-polarised 

light). 
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Chapter 6 : RESEARCH LIMITATIONS 

Although the present research was carefully designed and it reached its aims, 

some limitations should be taken under consideration when interpreting the results. 

The current shortcomings presented here will lead to future research directions to 

improve the method and provide more insight in age-related changes in cortical 

bone on Mediterranean samples.  

First, one of the main limitations of this research relates to the nature of the 

sample which was limited in representation of individuals for specific age ranges. A 

priori, a larger sample size was sought but a proportion of the specimens was finally 

discarded from the final dataset due to the following reasons: lack of basic 

information of the rib samples originally collected, pathological conditions observed 

microscopically or obtained through archives or autopsy reports, and diagenetic 

processes observed microscopically. The final sample study – total and separated 

by sexes and by samples – was, however, suitable for histological analysis since 

histological aging formulae have been developed with less or similar number of 

individuals (Stout et al., 1994; Kim et al., 2007; Pavón et al., 2010; Goliath et al., 

2016). Nonetheless, larger samples are always desirable in order to have a full 

representation of the population under study.  In this research, an improvement in 

number of individuals is required to balance the age categories in the youngest and 

the oldest age cohorts (under 40 and over 80 years, refer to Appendix A.3). On one 

hand, the low number of individuals under 40 years old may cause a potential 

impact in the future application of the method: if a young individual´s age is 

estimated applying the generated models, inaccurate results could be expected due 

to their under-representation in the sample.  On the other hand, it was noted while 

collecting the rib samples that old individuals were naturally over-represented in 

both osteological collections, which is indicative of the increasing trend of advanced 

ages in recent human populations (Ice, 2003). From this point of view, the 

developed method would respond to current methodological needs.   

 This links to the second potential limitation. Based on the mean age of the 

sample, cortical bone microstructures observed may have been influenced by 

pathologies, such as osteoporosis related to advanced age (Curtis et al., 2016). The 

inclusion of younger individuals would help to better understand bone remodelling 

dynamics along the life span. When pathological information was available or 

anomalous histological microstructures were observed, these individuals were 

excluded from the final study sample. However, for most of the individuals no 

pathological data was available. There are only a limited number of diseases that 
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are pathognomonic and are reflected by histological alterations (De Boer, Van de 

Merwe and Maat, 2013). Therefore, those disorders that cannot be discerned 

through the histological approach could not be acknowledged. From the 

physiological perspective, whether the inclusion of pathological individuals would 

lead to a more accurate representation of the population is an open debate, with 

some authors excluding pathological cases while others included them in their 

samples (Stout et al., 1994; Ericksen, 1991; Goliath et al., 2016). From the statistical 

point of view, pathological individuals may produce values that are outwith the range 

of the overall sample trend (Stout et al., 1994). In this study, when a case was seen 

as a potential regression outlier during the regression analysis, this case was 

excluded and the analysis performed again. From the practical aspect, the author 

would like to remark that in the circumstance of including some pathological 

individuals, such as cases CC22 or CC203 (see Appendix A.2), data collection 

would have been complicated due to the impossibility of accurate identification of 

microstructural features (e.g., Haversian systems presented elongated canals and 

irregular surrounding lamellae with some cortical bone areas lacking any sign of 

osteonal structures).  

Moreover, most of the individuals come from two cemetery populations 

associated with the largest cities, Heraklion and Limassol. Osteological collections 

may be biased towards individuals falling in a specific category (health, social 

status, cultural habits) (DiGangi and Moore, 2013). Whether a different pattern in 

bone turnover would be observed if the individuals were from other areas of the 

islands needs to be further investigated. Additionally, an improvement in the number 

of forensic cases in the samples would probably represent the current health status 

of the population; dietary habits seemed to have changed in the last decades and 

thus, an impact on bone cortical microstructure and bone turnover due to nutrition 

could be further explored (Vardavas et al., 2010; Angastinioti and Hutchins-Wiese, 

2016).  

Third, several statistical tests were performed to examine the influence of sex 

(males and females) as well as samples (Cretans and Cypriots) on the 

histomorphometric variables (Figure 4.11). Due to the limited and uneven number of 

individuals for each group separately – Cretan males, Cretan females, Cypriot 

males, and Cypriot females (Figure 4.5) – the differences between each group could 

not be assessed since the low representation of individuals in each age cohort 

would have resulted in misleading conclusions. Thus, the conclusions derived from 

this analysis are strictly limited to the fact that the subgroups could not be divided. 
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As mentioned above, the inclusion of more individuals would verify whether 

differences ultimately exist.  

Fourth, bone turnover might be altered by intrinsic and extrinsic factors, such 

as physical activity, nutrition, and pathological disorders, among others (see Table 

3.3). The lack of information (neither medical history nor life style) about the majority 

of the individuals included in the study sample prevents the author from drawing 

further conclusions about the obtained results.  

Fifth, only rib samples were used due to time constrains and the invasive 

nature of the histological technique. The advantages of using costal elements for 

histological analysis have been discussed previously (Stout and Paine, 1992), but 

other skeletal elements could provide more insights in bone remodelling rates and 

bone turnover. Bones, such as the femur, with slower remodelling rates and larger 

cortical areas than ribs present a later OPD asymptote, and thus, may be more 

suitable for histological age estimation. However, other factors like remodelling 

spatial variation within the cross-section or complex biomechanical factors should 

then be considered (Gocha and Agnew, 2016). 

Sixth, sampling area error testing was performed on six ribs from female 

individuals from the Cretan collection. Most of the ribs found were taphonomically 

affected and the entire length of the costal element was not available. Due to the 

small sample size, this study should be considered as an exploratory analysis and 

caution is warranted when drawing any conclusion.  

Lastly, inter-observer error was performed using two individuals with different 

levels of histological experience. As previously stated, histological analysis requires 

specific training and experience has been shown to play an important role in the 

application of the method (Lynnerup et al., 1998; Stewart et al., 2013). The 

possibility of an inexperienced forensic anthropologist applying the method and 

obtaining higher inter-observer error rates should be borne in mind. This suggests 

that in real settings, the method needs to be applied by someone with histological 

experience to avoid inaccurate results. Thus, further examination on the magnitude 

of error for practitioners without any histological experience may be included in 

future research. The high number of old individuals and the consequent difficulties 

observed for variable identification in the sample under study (e.g. differentiation 

between interstitial bone and fragmentary secondary osteons) entails a limitation in 

the application of the method in practise. 
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Chapter 7 : DISCUSSION 

The anthropologist can save himself/herself a lot of time by not trying to make 
more precise estimates of age than are warranted by the nature of the 
material. 

S. L. Washburn (1958) 

The successful use of bone histology for biological and anthropological 

research has been corroborated along the years (Kerley, 1965; Pfeiffer, 1998; 

Cuijpers, 2006). The application of hard tissue quantitative histology has covered a 

wide spectrum of research like comparative anatomy (Cvetkovic et al., 2013), 

taphonomic studies (Bell, 2012; Fernández Castillo et al., 2013; Hollund et al., 2015; 

Kontopoulos et al., 2016), ontogeny (Goldman et al., 2009; Jasinoski and Chinsamy, 

2012) and pathological assessment (De Boer et al., 2015; De Boer and Maat, 2016), 

among others. Animal and human bones have been assessed through bone 

microscopy demonstrating the application of bone histomorphometry in the 

identification of different patterns in bone microstructural organization (Hillier and 

Bell, 2007). As discussed in Chapter 3, there has been an extensive age estimation 

research carried out on different past and modern populations and on a variety of 

skeletal elements (Yoshino et al., 1994; Stout and Jackson 1990; Dudar et al., 1993; 

Maat et al., 2006). There are intrinsic and extrinsic factors such as within and 

between population remodeling rates variation, pathological conditions and/or 

methodological discrepancies that may have an impact on age histological 

assessment (Robling and Stout, 2008).  

Age estimation is a crucial step for the creation of the biological profile of an 

individual. Macroscopic methods are frequently the first approach used by 

osteoarchaeologist and forensic anthropologist to estimate age. However, when 

human skeletal remains are very fragmented and/or post-mortem thaphonomic 

effects have eroded bone surfaces, bone histomorphometry is one of the few 

available analytical methods that can be used (Stout, 1988).  As noted above, 

several factors are known to affect bone microstructure and intra-individual and 

inter-population variation may be taken into consideration when developing new 

population-specific standards and when testing existing aging histological methods 

(Chan et al., 2007; Kim et al., 2007; Peck and Stout, 2007). This research aimed to 

explore intra-individual variability in rib bone microstructures, validate existing 

histological methods, examine the relationship between histological parameters and 

age, and develop population-specific standards for the sample under study. The 

accuracy of the developed aging formulae was analysed in the previous chapter and 

will be discussed along the course of the following sections. Overall, the results 
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indicated that the application of quantitative histological methods for estimating age 

on the Mediterranean sample is feasible producing error rates comparable to those 

reported by macroscopic methods and by other histological studies (Dudar et al., 

1993; Stout et al., 1994; Cho et al., 2002). 

7.1 Intra and inter-observer error 

The methods commonly used to gather anthropological information from 

skeletal remains are scrutinized to evaluate measurement error, and to identify –

when possible- the degree of error related to practitioners experience and/or to 

technical methodological aspects (Krishan and Kanchan, 2016).  

In this study, the histological variables were tested for agreement and 

repeatability within and between observers. The results showed acceptable levels of 

intra-observer error as reported elsewhere (Keough et al., 2009; Goliath et al., 

2016). Yet, higher variability in the levels of agreement between observers was 

noticed. As a result of this finding, special attention must be drawn to the variables 

included in the best models selected for the Mediterranean samples.  

OPD is one of the most commonly used variables in histological studies (Stout 

and Stanley, 1991; Stout and Paine, 1992; Pfeiffer et al., 2016). As it is a composite 

variable, its constituent parameters were analysed individually. Through the course 

of data collection, the author noticed that N.On.Fg was difficult to assess due to both 

the definition and the nature of the parameter. The description of N.On.Fg adopted 

for this research states that at least 10% of the Haversian canal perimeter must 

exhibit evidence of resorption (Stout and Paine, 1992). This implies that the 

observer must estimate the missing percentage and could mislead differentiation 

between intact and fragmentary osteons. It is recommended that the observer 

calibrates his/her scores before final data collection. This can be done by comparing 

results in fragmentary secondary osteon count with the count results from an 

experienced bone histologist. 

In samples of advance age, the entire cortex becomes less structured and 

more crowded with bone features. Fragmentary secondary osteons are very 

numerous in older individuals and their identification becomes problematic due to 

the increase of surrounding microstructures like intact osteons and interstitial bone. 

Inter-observer error results showed that both N.On.Fg and OPD(F) demonstrate low 

repeatability regardless individuals experience, which is in agreement with other 

studies (Lynnerup et al., 1998; Crowder, 2005). On the other hand, neither N.On nor 

OPD(I) showed poor agreement between observers. Lastly, OPD demonstrates 
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acceptable levels of inter-observer error suggesting that despite the observed 

discrepancies regarding OPD(F), the combination of OPD(I) and OPD(F) 

compensates measurement inconsistencies as it has been acknowledged 

elsewhere (Crowder, 2005; Cannet et al., 2011).  

For the remaining histological variables, intra and inter-observer error values 

as an aggregate achieved repeatability standards. Rib area measurements are 

easily performed although Es.Ar has been shown to be the more subjective 

parameter due to difficulties in the identification of the transition from endosteal bone 

to intracortical remodelling (Agnew and Stout, 2012; Crowder et al., 2012). The 

technical aspects of the acquisition of rib area parameters through Dino Lite images 

could be further tested in future research as this specific data collection protocol has 

not been applied previously (Stewart et al., 2013).  

On.Cr produced a high proportion of within-subjects variance as indicated by 

TEM R values for both for intra- and inter-observer. Nonetheless, rTEM and 

repeatability assessed through Bland and Altman analysis were within the 

acceptable thresholds. Other studies did not find intra-observer differences for this 

parameter but their statistical approach did not include TEM analysis (Crescimanno 

and Stout, 2012; Goliath et al., 2016). Photomicrographs are used for the 

assessment of On.Cr and ImageJ software calculates automatically the circularity 

index including area and perimeter (Rasband, 2000). The possible combination of 

both parameters may have induced more variability in the measurement as it was 

noted by other authors testing On.Cr data acquisition protocols (Mears et al., 2014). 

Finally, the author noticed a possible drawback in On.Cr data collection: as osteons 

overlap with age, measuring circularity becomes an arduous task due to the difficulty 

of finding “intact osteons with complete reversal lines and round Haversian canals” 

on the selected rib areas (Goliath et al. 2016: 282.e2). This methodological issue 

has been also noticed by other researchers (Goliath, 2010). 

Histomorphometric methods are considered experience-based techniques 

(Garvin and Passalacqua, 2012). Two individuals with different levels of experience 

were used in this research to test whether histological training has an impact on the 

inter-observer error levels. Interestingly, the same parameters demonstrated 

inconsistencies for both observers suggesting that factors other than practitioner 

expertise may play an important role in the method’s reliability. As mentioned 

previously, one of the issues might be the definition of microstructures which may 

lead to subjective evaluation. Regarding possible technical issues, a standard 

counting reticule was not used in this study but instead the assessment was carried 
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out through microscopy and photomicrographs as suggested in other studies 

(Crowder and Rosella, 2007; Cannet et al., 2011; Absolonova et al., 2013; Goliath et 

al., 2016). It is unlikely that the counting of features as fragmentary osteons would 

be drastically altered due to the data collection protocol. Inherent methodological 

limitations might have counted as sources of error (Lynnerup et al., 1998).  

Despite the reported inter-observer error for some of the histomorphometric 

parameters, age estimates produced by the scores obtained by each observer were 

very similar (Figure 7.1). Other studies have shown the same pattern suggesting 

that inter-observer error does not affect the final calculation of predicted ages (Stout 

and Gehlert, 1980; Cannet et al., 2011).  

 

 

Figure 7.1 Histogram presenting mean estimated ages obtained by each observer (y 

axis) applying three formulae (Stout and Paine (1992); Cho et al. (2002), Goliath et al. 

(2016), Model 15 (x axis). 

A possible research direction that would contribute to standardization, 

improvement of data collection and reliability of bone histological methods could 

focus on the analysis and assessment of intra- and inter-observer error in future 

studies. While intra-observer error is sometimes reported in published histological 

studies (Goliath et al., 2016), the inter-observer error does not seem to be so 

commonly undertaken (Pfeiffer et al., 2016; Goliath et al., 2016). In other instances, 

none of them are even evaluated (Stout et al., 1994; Watanabe et al., 1998; Cho et 
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al., 2002; Han et al., 2009; Lee et al., 2014). This trend may decrease scientific 

reliability and limit the use of microscopic methods for expert witness testimony in 

the court room,  even if the method accurately estimate age of unknown individuals 

(Christensen et al., 2014). 

7.2. Sampling error pilot study 

Sampling area seems to be a significant factor in the application of histological 

aging methods. Both intra- and inter-section variation due to topographical 

differences in cortical bone remodelling have been previously reported (Tersigni, 

2005; Chan et al., 2007).  For example, femoral intra-section heterogeneity –i.e. 

from periosteal to endosteal area – may produce discrepancies in the age estimates 

depending on the sampling location (Pfeiffer et al., 1995). A common belief for long 

bones is that muscle attachment areas should be avoided in histological sampling 

due to high remodelling variability as a result of muscle attachment strains (Ahlqvist 

and Damsten, 1969; Sobol et al., 2015). Gocha and Agnew (2016) found high 

variation in remodelling densities across the midshaft femoral cortex with the antero-

lateral periosteal area exhibiting the highest OPD values in individuals over 35 years 

old. Effective age of adult compacta of this specific location might be affected by 

modelling and remodelling drifts during development, and the diaphyseal 

biomechanical tensile loading on this area might be the cause of higher OPD values 

(Skedros, 2012; Gocha and Agnew, 2016). Other studies have shown remodelling 

variability for serial sections along the length of long bones resulting in biased 

estimated age (Tersigni, 2005). This fact indicates that a complex and 

heterogeneous mapping of remodelling rates in loading bones might be considered 

when choosing sampling areas for aging techniques.   

Costal elements contrary to long bones are fragile and their fragmented nature 

makes the identification of sampling area difficult. Ribs are not exposed to weight 

bearing forces, and so, less involved in complex biomechanical interactions 

(Andriacchi et al., 1974; Tommerup et al., 1993). However, costal elements are 

subjected to constant respiratory mechanical activity and also contribute to other 

body movements. The main vertebro-costal muscle attachments are the intercostal 

and the inferior muscles and superior serratus posterior muscle which are involved 

in respiration (Ombregt, 2013). The sternal segment would be biomechanically 

affected by the transversus thoracic and the pectoralis minor muscles, while the 

main attachment on middle antero-lateral area corresponds to the serratus anterior 

muscle mostly related to scapular movements (Andriacchi et al., 1974; Ombregt, 

2013). The rib area close to the costovertebral joint is the scaffolding for the 
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musculature of the vertebral column playing an important role in stabilization, 

movement and respiration (Saker et al., 2016). Although it seems that ribs might 

undergo complex biomechanical interactions based on muscles attachments and 

related movements, costal elements account for a medium influence of soft tissue 

(muscle, ligaments and tendons) (Skedros, 2012). Based on the constant respiratory 

mechanics, remodelling rates would be assumed to be also constant through the 

length of the rib. Yet, there is a lack of studies testing that hypothesis. 

 Intra-section variation was explored between the internal and external cortex 

in a study by Cannet and colleagues (2011) and it was found to be significant for 

only specific histological parameters. Taking into account the lack of studies on 

inter-section variation and the possible effect that it could have on age estimation 

methods, a pilot study was conducted on six thin-sections extracted from the length 

of six 4th rib samples to test whether intra-costal sampling area had an impact on the 

values obtained for raw parameters (N.On.Tt and Ct.Ar) and for the composite 

variable (OPD) (Tables 5.3-5). 

The preliminary results of the analysis performed in this research indicated 

that the highest variability for N.On.Tt was produced by the two youngest 

individuals. Inter-section comparison showed that the highest number of osteonal 

structures was mostly produced by vertebral sections of the rib. Distal sections 

extracted from clavicles showed higher osteonal frequency numbers than middle-

shaft sections which could be attributed to pulling forces applied by muscles 

attachments on the distal areas (Sobol et al., 2015).  

An examination of Ct.Ar values suggested that the highest variation was 

observed also for the youngest individuals. For all the specimens, the lowest area 

was produced by the sternal segment while the highest was produced by the 

vertebral segments. The anatomical morphology of the rib supports this finding as 

the area closest to the vertebral end is larger in order to articulate with the 4th 

thoracic vertebrae (Figure 7.2). The transition from the midshaft to the rib neck and 

head requires a more consistent osseous structure than the sternal segment  

(Roberts and Chen, 1972).  
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Figure 7.2 29- year-old individual showing the difference in Ct.Ar: sternal end (left), 

vertebral end (right). Image captured with Dino Lite®. 

Crowder and Rosella (2007) assessed the relation between N.On.Tt and 

Ct.Ar/Tt.Ar on intra-individual sections concluding that higher number of osteonal 

structures does not always imply higher Ct.Ar/Tt.Ar. Further analysis of Ct.Ar/Tt.Ar 

on the Cretan sample supported this suggestion. However, vertebral segments 

matched high values for N.On.Tt and Ct.Ar for most of the individuals under 35 

years old which might indicate that certain correlation exists between these two 

parameters. While Ct.Ar/Tt.Ar is a measurement independent of body size, Ct.Ar is 

directly related to bone size and robustness (Stewart et al., 2015). Rib-cross section 

area reaches a maximum around 30 years old and then declines as a result of 

endosteal resorption (Takahashi and Frost, 1966). To the author´s knowledge, no 

other studies have been performed on the entire length of the rib, and thus, 

comparative data are not available. 

OPD values increased with age and inter-section variation ranged from a 

minimum of two points for the 29-year-old individual to a maximum of six for the 58-

year-old individual. The two youngest individuals presented the highest intra-section 

variation as assessed by all variability values as an aggregate. Remodelling rates 

expressed as OPD values might indicate a more heterogeneous remodelling pattern 

along the length of the rib for these two specimens. The shape and size of the rib 

cage is transformed during growth and development through modelling drifts and 

cortical drifts in order to achieve the adult proportions; when maturity is reached, a 

decrease occurs (Frost, 1987a). Growth spurt ends around 17-25 years of age for 

females with the appearance of the articular area of the tubercle and the final fusion 

of the rib head (Scheuer and Black, 2004). Although smaller ontogenetic changes 

are present at this stage – and some still unknown – an increase in vertical thoracic 

height is still observed in late adolescence possibly related to an increase in height 

and changes in sub-thoracic organs (Bastir et al., 2013). Streeter (2005) developed 

an aging method based on histomorphological patterns in sub-adults midshaft ribs 
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identifying intense remodelling in both cutaneous and pleural cortex for 18- and 21-

year-old individuals.  

Regarding inter-section OPD results, three specimens produced the highest 

OPD values by sternal segment while there seems to be a random pattern in the 

distribution of the lowest OPD values (Figure 7.3). A previous study published by the 

author and colleagues focused on the impact of sampling area on age estimation 

techniques on the six Cretan individuals (García-Donas et al., 2016). OPD values 

were inserted into two existing histological formulae (Stout and Paine, 1992; Stout et 

al., 1994) to verify the magnitude of error that could be attributed to sampling area. 

A systematic underestimation of all the individuals was noticed: only the two 

youngest specimens fell within the error rates reported by both methods and error 

rates increased as the age of the individuals increases (refer to Table 5.6) (García-

Donas et al., 2016). As the authors noticed, rib number or rib segment may have 

introduced some error based on the standards reported by each method. Crowder 

and Rosella´s findings (2007) indicate that standard ribs can be reliably used without 

introducing a major bias in OPD values. On the other hand, it seemed that no 

specific segment performed systematically more accurately than the other 

suggesting that rib sampling area might not alter significantly the age estimates. The 

overall error resulting from the under-estimation of the individuals is higher than the 

possible error introduced by each segment along the rib length (García-Donas et al., 

2016). 

 

Figure 7.3 OPD values for each thin-section extracted from each individual. X axis 

represents sections codes from sternal to vertebral end: S1=first sternal, S2=second 

sternal, M1=first middle, M2= second middle, V1= first vertebral, V2= second 

vertebral. 
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In summary, a generally low variation in relation to the OPD produced by each 

thin-section from the same individual was observed. Moreover, intra-section 

variation indicated that no specific sampling site performs better when applying two 

existing formula; hence, any segment might be possibly used if the topographical 

area along the rib cannot be identified. Due to the small sample size, this is an 

exploratory analysis and a larger and more heterogeneous sample is required to 

verify the preliminary results. Further research could examine intra-costal bone 

remodelling rates variation along the rib length within the same individual as clinical 

and anthropological studies have already noticed (Frost, 1969; Frost, 1987b; 

Crowder and Rosella, 2007). Moreover, a larger sample size will verify if other 

factors as sex differences, inter-population variation or pathological conditions may 

be causing the discrepancies between known and estimated age (Burr et al., 1990; 

Paine and Brenton, 2006a; Kim et al., 2007; Oursler et al., 2008). 

7.3. Validation study  

A forensic anthropologist is often tasked with the examination of skeletal 

human remains and reconstruction of the biological profile through the application of 

peer-reviewed methods (Byers, 2011). Age estimation is one of the first steps in the 

identification process and the choice of the method is crucial to ensure accurate 

results (Merritt, 2013). Occasionally, the fragmented nature of human remains 

makes histological methods one of the few tools available for estimating age. Bone 

remodeling have shown inter-population variation and methods developed from 

populations not closely related to the target sample demonstrated a decrease in the 

accuracy rates (Stout et al., 1996; Kim et al., 2007; Pavón et al., 2010). Therefore, 

validation studies testing histological aging methods are required to guarantee 

reliable results in forensic cases or in osteo-archaeological samples (Stout and 

Gehlert, 1980; Crowder and Pfeiffer, 2010).  In order to assess the accuracy of 

aging techniques and verify whether population-specific formulae were required for 

the Mediterranean sample, four existing aging equations are applied and the results 

scrutinised (Stout and Paine, 1992; Stout et al., 1994; Cho et al., 2002; Goliath et 

al., 2016). 

Inaccuracy and bias are commonly used for evaluation of methods reliability 

(Lovejoy et al., 1985b; Crowder, 2005). The outcome from this research showed a 

general pattern of underestimation for all the applied methods except for Goliath et 

al. (2016) formula. The main factors affecting the methods´ performances are: 

differences in demographic characteristics and biological affinity between reference 

and target samples (age and sex distribution, inter-population variability…), inherent 
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limitations related to histological age estimation techniques (i.e. OPD asymptote), 

and methodological issues related to the statistical approach (Figure 7.4). 

Regarding the entire Mediterranean sample, the results indicated that Stout 

and Paine method (1992) produced grossly inaccurate age estimates which is in 

accordance with other studies (Dudar et al., 1993; Pratte and Pfeiffer, 1999; 

Crowder and Pfeiffer, 2010). Stout et al. (1994) and Cho et al. (2002) formulae 

performed similarly with a slightly lower accuracy and bias values seen for Cho et 

al.´s African-American equation. Goliath et al. formulae (2016) provided the best 

performance overall, although it showed a tendency of overestimation of young 

individuals and underestimation of the oldest age cohort. The same tendency was 

observed for sexes and samples (Cretans and Cypriots) for all predicting equations 

displaying only discrepancies for specific age categories. Overall, Stout and Paine 

(1994), Stout et al. (1994) and Cho et al. (2002) methods showed a gradual 

increase of inaccuracy and bias values with increasing individuals´ chronological 

age. When the sample and sub-samples were truncated at 60 years of age, a 

substantial decrease in accuracy and bias was seen for the formulae including OPD 

as a predictor. This observation has been reported by other studies (Crowder and 

Pfeiffer, 2010), and it might be explained by OPD rib asymptote occurring at this age 

and provoking a dissociation between chronological and estimated age (Stout and 

Crowder, 2012). Furthermore, the under 60 years old age cohort in the 

Mediterranean sample presented a closer mean age to the mean age of the 

reference samples explaining to some extent its higher accuracy (Figure 7.4). In 

reverse, Goliath et al. (2016) formula only includes On.Cr as a single predictor. It 

has been suggested that osteon circularity may be a mechanism for providing 

support to the loading forces and for preventing micro-damage, and thus, being 

positively correlated to age (Schaffler et al., 1995). Hence, the better performance of 

this method is presumed since it is not affected by osteon densities plateau. The low 

number of young individuals included in Goliath et al. (2016) original reference 

sample (7% of the total) could explain the higher inaccuracy and bias of this formula 

for the young Mediterranean individuals. 

Rib samples from both males and females produced very similar results when 

compared as a whole group. However, females exhibited slightly higher inaccuracy 

and bias values than males when the sample was divided in age categories. The 

differences between sexes are especially noticeable for the over 80 years old age 

group. For the three methods including OPD as predictor (Stout and Paine, 1992; 

Stout et al., 1994; Cho et al., 2002), this might suggest more variability in 

remodelling rates within the female group, along with a higher mean age for females 
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(Females = 92 years old, Male = 83 years old). Moreover, the increment in bone 

remodelling rates related to post-menopause is not steady throughout time and it is 

also triggered by other diseases that are potentially appearing with advanced age 

(Recker et al., 2004). Other studies observed a similar trend for females in their 

samples (Crowder, 2005).  

Goliath et al. formulae (2016) produced the same outcome with higher 

inaccuracy for the oldest female category when compared to their male 

counterparts. Britz et al. (2009) did not find any correlation between femoral On.Cr 

and sex, although On.Ar and sex were correlated. The relationship between age and 

a decrease in On.Ar may result in more circular osteons with weight, strains and 

loading complexity possibly affecting osteon size (Currey, 1964; Van Oers et al., 

2008; Britz et al., 2009). However, other factors such as genetics and physiological 

mechanisms might play an important role in On.Ar (Dominguez and Agnew, 2016). 

Some studies reported sexual differences in osteon size (Burr et al. 1990; Kim et al. 

2007) and others contradicted this outcome (Pfeiffer, 1998). Even if circularity 

increases with age, the possibility of potential age pathological conditions related to 

the female group (as postmenopausal osteoporosis (Frost, 2003)) might affect 

osteonal structures morphology and the appearance of the rib cortex. Thus, a 

possible reason for the observed sex discrepancies could be the On.Cr data 

collection issue mentioned previously. Whether the higher variability observed in 

Goliath et al. formula (2016) for the oldest female group was due to intrinsic factors 

or to age related changes needs to be further examined with a larger sample size for 

this particular age cohort.  

Cretans and Cypriots showed the same underestimation tendency for all 

histological methods except for Goliath et al. formulae (2016) that still produced the 

optimal results. Overall, both samples showed similar accuracy and bias values with 

slight differences observed by age cohorts. It is worth noticing the under-

representation of Cypriot individuals younger than 40 years which produces an 

unbalance of the age distribution. However, the Cretan sample did not perform 

better; hence, it seems that there might be a secondary reason. Probably, the 

overall skewed age distribution of the Mediterranean samples affected the general 

performance of the methods (Figure 7.4).  

Based on the low accuracy of three of the four formulae applied (Stout and 

Paine, 1992; Stout et al., 1994; Cho et al., 2002), inter-population differences in 

bone remodelling between the reference samples and the Mediterranean samples 

might be considered as their biological affinity is not ensured (Hughey et al., 2013; 
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Hellenthal et al., 2014; Heraclides et al., 2017). This matter has been previously 

reported for other histological studies (Kim et al., 2007). Population specific 

variability in bone mass and bone structure have been shown (Weinstein and Bell, 

1988; Ericksen, 1991; Schnitzler, 1993), and discrepancies between known and 

estimated age were noticed (Crowder 2005; Pavón et al. 2010; García-Donas, 

School, Paine et al., 2017). While this could be a true statement for formulae 

accounting for remodelling rates variables (such as OPD), it appears that when an 

alternative parameter is used (On.Cr for Goliath et al. formula (2016)), the possible 

inter-population differences seem to be minimised. A recent research found low 

accurate age estimates when methods based on degenerative articular changes 

were applied on the Cretan Collection (Michopoulou et al., 2017). One of the 

authors’ explanations is that the expression of the age indicators may not be 

strongly correlated to age as they were for the reference sample resulting in 

unreliable age estimates.  

The general inaccuracy and bias values produced by this validation study did 

not show major differences when sub-groups were compared (sexes and samples, 

separately). Attention must be drawn to the fact that inherent sexual and genetic 

differences could not been discern within sexes and within samples due to sample 

size and uneven number of individuals for each sub-group (see previous chapter). 

Further research will elucidate whether the spotted differences are meaningful but 

conclusion are now limited to the given sample.  
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Figure 7.4 Factors biasing the performance of Stout and Paine (1992), Stout et al. 

(1994) Cho et al. (2002) and Goliath et al. (2017) methods on the study sample. 1Sex 

distribution only similar for Goliath et al. (2016); Colours indicate the basis of each 

method, 2All samples are Americans with European ancestry or African-Americans 

(see Table 7.3). 

Age and sex distribution differences between reference and target samples 

may have an impact on the methods reliability (Bouvier and Ubelaker, 1977; Aiello 

and Molleson, 1993). As seen in Figure 7.4,  Stout and Paine (1992), Stout et al. 

(1994) and Cho et al. (2002) samples differ from a minimum of 10 to a maximum of 

30 years from the Mediterranean sample mean age (60 years), with Stout and Paine 

(1992) accounting for the highest mean age difference between reference and target 

samples. According to Bland and Altman results, Stout et al. (1994) is 

recommended to age young individuals as assessed by the limits of agreement and 

bias. All formulae generated by Cho et al. (2002) produced similar accuracy and 

prediction power; however, the ethnicity unknown equation performed the best as 

noticed by other studies (Pfeiffer et al., 2016). Goliath et al. (2016) sample age 

distribution matches the mean age of the sample under study supporting its overall 

good performance. This method estimated age within the limits of agreement for 

96% of individuals older than 60 years of age. Regarding sex distribution, Stout and 
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Paine (1992) is skewed towards males while Goliath et al. (2016) accounts for a 

more even sex distribution which might also influence the validation study results.  

Sampling area and/or rib number could be the cause of the poor performance 

for Stout et al. (1994) (Figure 7.4). The sampling error pilot study conducted by the 

author and colleagues (García-Donas et al., 2016) suggested that other inherent 

factor as inter-population variability rather than rib topographical location could be 

the major causes of the reported errors. As far as sampling area is concerned, this 

matter has been discussed in the previous section so no further debate will be hold 

here. Regarding rib number, ribs from the Mediterranean samples consists mostly of 

4th ribs and it could be thought that certain bias is introduced by the fact that Stout 

and Paine (1992) standards comprises the 6th costal element. As noted above, 

standard ribs did not introduce major bias on the methods reliability (Crowder and 

Rosella, 2007). Indeed, recent histological aging studies do not specify or report rib 

number in their standards (Goliath et al., 2016; Pfeiffer et al., 2016). 

Differences between histological variables values among the samples were 

examined for their potential impact on the methods performance. The Mediterranean 

mean OPD value was of the same general magnitude as those reported by Stout 

and Paine (1992) and Stout et al. (1994) (Paine personal communication) (see 

Table 7.3 in next section). However, the Mediterranean sample presented a higher 

mean age. A larger difference was noted for mean OPD, On.Ar and Ct.Ar/Tt.Ar 

values between European and African-American ethnicity groups and the study 

sample. Moreover, the larger variation was accounted among Cretans and African-

Americans (note Ct.Ar/Tt.Ar between Cretans and African-Americans being 32% 

and 35%, respectively). On.Cr mean value for Goliath et al. reference sample (2016) 

was comparable to that obtained by the study sample supporting its better 

performance (0.905 versus 0.910). Excluding possible inter-observer errors 

differences – that are not analysed by any of the methods under consideration, and 

therefore, impossible to assess – possible differences in bone remodelling rates 

between populations might be drawn to attention. This issue will be further 

discussed in the next section of this chapter.  

The last argument concerns the statistical approach undertaken by the four 

aging prediction methods used for this validation study. Stout and Paine (1992) 

method applies logarithmic transformed data and its systematic underestimation on 

independent samples has been reported by several studies (Dudar et al., 1993; 

Pratte and Pfeiffer, 1999; Crowder, 2005). Transformation from logarithmic data into 

arithmetic units induce an underestimation bias due to the geometric mean used for 



www.manaraa.com

 

221 
 

making the predictions being always less that the transformed arithmetic mean 

(Smith, 1993). While the common statistical procedure to estimate age is the least 

square linear regression, some authors have demonstrated systemic under- and 

over-estimation issues and the use of classical calibration (dependent variable being 

the age indicator) was presented as an alternative (Rogers and Stout, 1998). If that 

approach would be applied, confidence intervals and source of errors would be 

more difficult to be established (Aykroyd and Lucy, 1997). The application of Bayes´ 

theorem should be explored as a possible alternative to avoid systemic under and 

over-estimation (Samworth and Gowland, 2007). 

7.4. Histological variables and age 

Many researchers as the means to estimate age have used bone 

histomorphometry. As presented in the first two chapters, microscopic age changes 

are the result of concurrent physiological mechanisms that bone undergoes 

throughout one´s life. The foundation for histomorphometric age estimation relies on 

bone modelling and remodelling processes with the latter being the focus of adult 

age assessment (Trammell and Kroman, 2013). Remodelling discrete cellular 

packets (BMU) can be assessed qualitatively and quantitatively (e.g. frequency 

number, morphology, size, geometrical properties) along with age-dependent 

alterations in cortical and trabecular micro and macrostructure. Hereby, the direct or 

inverse relationship of the microscopic indicator with age can be effectively applied 

for age prediction. Unfortunately, the relationship between histomorphological 

features and age is not fully consistent as it happens with other biological age 

markers (Mays, 2015). Thus, intra- and inter-variability due to sex, pathology, 

nutrition, physical activity and genetics – among others factors –  may consequently 

affect not only the application of the methods but also the expression of the  

microstructural features (Robling and Stout, 2008). Histomorphological features 

have demonstrated different degrees of variability and different types of age 

correlation (Jowsey, 1966; Pfeiffer, 1998; Kim et al., 2007). The main parameters 

assessed in this research, and particularly the ones included in the best models, will 

be discussed according to the results obtained in the previous chapter.  

As a general concept, frequency number of secondary osteons (N.On, 

N.On.Fg and N.On.Tt) has a direct age effect with an increasing number of osteonal 

structures associated with an increasing age (Kerley, 1965). The underlying 

biological mechanism relates to the fact that remodelling occurs throughout life as a 

response to maintain bone material and functional properties and capacities; the 

replacement of specific bone sites is carried out by the coupled and coordinated 
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activity of osteoblasts and osteoclasts seen in a 2D plane as new BMU appearing in 

the cortex (Frost, 1969; Parfitt, 2002). Considering all the individuals included in this 

study, N.On presented an average of 190 for the 20-30 age range with the highest 

peak reached in individuals between 40 and 50 years old. This trend reflects the 

increase in intact osteons with age as lamellar bone is replaced by secondary bone. 

However, a general decrease was observed for individuals over 60 years of age with 

an average of 170 intact osteons (Table 7.1). This indicates  a statically significant 

although weak decrease in N.On which was reported somewhere else (Mulhern and 

Van Gerven, 1997), but contradicts other research results (Yoshino et al., 1994; 

Pfeiffer et al., 2016). In Kerley´s study (1965), a plateau for intact secondary osteons 

for individuals older than 50 years of age can be seen in all the skeletal elements 

used. Moreover, the number of complete and mature osteons with a high density 

mineral inner lamellae decreases with age as a result of more variability in the time 

required to accomplished full mineralization (Ortner, 1975). New forming osteons 

create a new canal (cutting cone) but also they may obliterate previous osteons 

canals removing any evidence of intact osteons (Martin and Burr, 1989). Thus, the 

frequency number of intact osteons observed might be related to the osteonal 

mineralization or due to osteon overlapping with the underlying effect of the advance 

age of the individuals under study. 

N.On.Fg demonstrates a statistically significant increase with age as shown 

somewhere else (Kerley, 1965; Keough et al., 2009; Pfeiffer et al., 2016). As noted 

previously, this parameter reflects the relative appearance of new osteonal 

structures removing partially or completely existing intact osteons. A common 

pattern observed in the Mediterranean sample was enlarged resorption spaces or 

Haversian canals that failed to refill with may be an indication of osteoporosis and 

related bone loss (Raisz, 2005). As a result, an increment in consequent creation of 

fragmentary osteons occurs (Figure 7.5).  

Table 7.1 N.On, N.On.Fg and N.On.Tt for the Mediterranean sample by decades. 

 

Decades 

 

20         
(N=7) 

30               
(N=4) 

40           
(N=11) 

50           
(N=17) 

60          
(N=29) 

70           
(N=7) 

> 80       
(N=13) 

N.On 183 ± 81 195 ± 43 198 ± 102 186 ± 74 173 ± 62 129 ± 43 144 ± 79 

N.On.Fg 65 ± 27 81 ± 18 88 ± 45 113 ± 35 123 ± 44 116 ± 56 120 ± 53 

N.On.Tt 248 ± 103 276 ± 54 286 ± 146 299 ± 102 296 ± 96 246 ± 98 264 ± 129 
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Figure 7.5 Example of enlarged canal (dotted blue line) that removed previous 

Haversian systems resulting in N.On.Fg (green outline) (10x semi-polarised 

microphotographs; top: female Cretan, 56 years old; bottom: female Cyprus, 67 years 

old. Note also low number of N.On. 

A non-statistically significant association with age was observed for N.On.Tt, 

what it is expected due to the negative and positive relationship of the two 

constituent parameters (N.On and N.On.Fg). Yet, an increase in N.On.Tt was seen 

until the 50-60 decades of life, and afterwards it seems that senile degenerative 

changes may have affected the results with a lower rate of osteons creations as 

stated elsewhere (Table 7.1) (Wu et al., 1970). The frequency number of osteons – 

both observed osteonal structures and estimated missing osteons – created per 

year per unit area represents the mean activation frequency (Wu et al., 1970). This 

parameter along with mean annual bone formation rate show a decrease pattern in 

their relation to age (Stout and Lueck, 1995). As shown by Frost (1964), mean 

activation frequency can be shown as a function of osteonal remodelling ranging 

from a higher peak in childhood to a decline at 35 years of age, to again increase 

afterwards around 60 years old and reaching a minimum value in the latter decades 

of life. The physiological mechanism reflects the pattern of rapid bone turnover and 

new osteons creations driven by modeling cortical drifts during growth; this implies 

the replacement of primary bone into osteonal bone. In adulthood, the activation rate 

is maintained to a minimum and only increased when needed for metabolic or 
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mechanical demands; it demonstrates a senile remodeling deficit for the last three 

decades of life (Martin and Burr, 1989). 

These age-related associations observed for the raw frequency number 

parameters are strongly coupled with a decrease in the amount of cortical area with 

increasing age, and thus, accounting for one of the best indicators in histological 

aging methods, OPD (Stout and Paine, 1992; Kim et al., 2007; Lee et al., 2014; 

Pfeiffer et al., 2016). Indeed, most of the rib histological studies performed in the 

later years do not report frequency numbers for any of the osteonal structures, but 

instead focus on the number of structure per unit area (Cho et al., 2002; Pavón et 

al., 2010; Goliath et al., 2016). 

Ct.Ar decrease with age is related to an expansion of the medullary cavity and 

trabecularization of the cortex expressed as the difference between Tt.Ar and Es.Ar. 

In this study, Tt.Ar seems to be fairly stable through age although a slightly larger 

total periosteal area is seen in the individuals under 60 years old in comparison to 

the older age cohort (Martin et al., 1980). Es.Ar has been recalled a problematic 

measurement due to the trabecularization of the endosteal envelope (more 

extensive and irregular in ribs than in long bones). Some studies suggest the 

inclusion of the transitional zone to further improve bone loss and endosteal 

resorption measurements although methodological drawbacks and difficulties in its 

identification are being still questioned (Dominguez and Agnew, 2014; Zebaze and 

Seeman, 2015). In general terms, the thinning of the cortex along with an additional 

increment of intracortical porosity and remodelling rates will result in bone loss with 

advanced age in all skeletal elements. The amount of rib Ct.Ar increases until 25-30 

years of age and decreases sharply afterwards (about 25-30% of bone mass loss) 

(Takahashi and Frost, 1966). Nonetheless, it is important to consider the factors 

affecting Ct.Ar aging changes such as sex and population differences, body size, 

muscle mass decrease, bone site and type, mechanical adaptation, hormonal 

alterations, nutrition and other still unknown biomolecular mechanisms (Gosman et 

al., 2011; Jepsen and Andarawis-Puri, 2012). Ct.Ar/Tt.Ar is commonly incorporated 

in histological studies as it shows a negative correlation with age (Cho et al., 2002; 

Pfeiffer et al., 2016), though some studies did not report any age association (Kim et 

al., 2007). This parameter represents  a measure of cortical area unrelated to body 

size (Stewart et al., 2015). 

OPD has been shown to be one of the best age predictors in this study 

confirmed by its inclusion in most of the generated models. OPD composite 

variables (OPD(I) and OPD(F)) shown also a positive correlation with age with the 
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latter reporting a stronger age association. This trend has been shown by other 

studies concluding that the predicting power of OPD can be mostly attributed to 

OPD(F) (Crowder, 2013). Other studies showed no age associated correlation for 

OPD(I) on femora (Crowder and Dominguez, 2012). Caution must be taken here. 

The loading experienced by weight bearing bones (such as femora) is not 

comparable to the stress applied to non-weight bearing bones (such as ribs) with 

studies showing differences between intra-individual skeletal elements depending 

on their loading environment  (Tommerup et al., 1993; Cho and Stout, 2011). Most 

of the published histological studies on ribs did not report the composite variables 

for OPD, and thus, no robust comparable data is available. Nonetheless, published 

data demonstrate the OPD prediction power for age estimation on costal elements 

(Stout and Paine, 1992; Stout et al., 1994; Cho et al., 2002; Kim et al., 2007; Pavón 

et al., 2010; Pfeiffer et al., 2016).  

Osteon size indicated an inverse relation with age for On.Ar and On.Pm and a 

positive age association for On.Cr. The results of this research are in consensus 

with other studies (Cho et al., 2002; Kim et al., 2007; Goliath et al., 2016), although 

non-significant correlation between osteon size and age was also reported (Burr et 

al., 1990; Pfeiffer, 1998). Osteons dimensions tend to decrease as age advances 

according to several theories (Abbott, Trinkaus and Burr, 1996) (Abbott et al., 1996). 

Osteon measurements performed in this study included the Haversian canal. Early 

research stated that the activity of both osteoclasts and osteoblast seems to be 

reduced with increasing age the first removing less bone and the second refilling 

with less efficacy resulting in smaller osteons but with larger Haversian canal area, 

and thus, producing an increment in intracortical porosity (Martin et al., 1980). A 

significant relationship between On.Ar and Haversian canal size have been noted 

although with differences between remodelling sites possibly attributed to different 

circulation at the periosteal or endosteal envelopes (Qiu et al., 2010). Experimental 

studies showed an inverse relationship between osteon diameter and large strains 

(Van Oers et al., 2008). If this is the case, then osteon dimensions may explain 

physical activity although the evidences suggest that other factors than strains may 

play a role in osteons size (Pfeiffer et al., 2006). However, a study conducted in 

osteon dimension to discern between animals and humans found that differentiation 

between species was accurately achieved by On.Ar indicating that locomotion 

loading experiences have a clear effect on osteonal dimensions (Dominguez and 

Crowder, 2012). Moreover, ribs could benefit from the constant respiratory 

movement as normal strain levels related to physical activity have a positive effect 

on bone (Qiu et al., 2003). Dominguez and Agnew´s research noted that age and 
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Ct.Ar/Tt.Ar influence On.Ar in ribs being larger in the pleural cortex than in the 

cutaneous cortex possibly due to a compensatory response to higher cortical loss in 

the latter (Dominguez and Agnew, 2016). Further research on the sample under 

study comparing intra-section variability might verify this outcome. A more 

methodological issue than a physiological response was also suggested. Age 

changes in osteon size may be an artefact of a higher remodelling activity and the 

consequent overlapping and removal of larger osteons in older individuals, thus, 

leaving only smaller osteonal structures to be measured (Takahashi and Frost, 

1966).  

Osteon cross-sectional shape (On.Cr) has been recently used as means for 

age estimation although the appreciation of more circular osteons appearing with 

age was acknowledged in early research (Currey, 1964). The inverse relationship 

between On.Ar and On.Cr is confirmed by this research. It has been also suggested 

that the increase in On.Cr may be a product of increase in OPD as it implies the 

appearance of new osteons would remove larger and irregular previous osteonal 

structures (Britz et al., 2009). In relation to weight loading bones, more circular 

osteons may be a mechanism for providing support to the loading forces and 

preventing micro-damage, which will explain its positive correlation to age (Schaffler 

et al., 1995). This biomechanical property would be also correlated to small osteons 

dimensions.  The reciprocity between more and smaller osteonal structures would 

help to stop fatigue microcracks propagation since numerous and closer cement 

lines would serve as a boundary (Schaffler et al., 1995; van Oers et al., 2008). This 

acts as a balance to compensate senile effects in bone material properties and to 

increase bone energy absorbing capacities (Burr et al., 1990). 

Moreover, osteon size might determine osteon packing arrangement on a 

given area of the cortex with the possibility of smaller osteons allowing higher 

osteon accumulation per squared millimetre (Figure 7.6). It implies the observations 

of more intact and fragmentary osteonal structures on that given area (Robling and 

Stout, 2008). Also, this packing density is related to the aforementioned energy 

absorption mechanism limiting micro-crack propagation (Martin et al., 1998).  
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Figure 7.6 Packing effect: relation between osteon area and number of osteons that 

can accumulate on a given cortical area. Grey shapes represent fragmentary osteons 

(Adapted from Wu et al. 1970). 

These mentioned dynamics between histomorphometric variables play an 

important role in bone osteonal remodelling. Nevertheless, other intrinsic and 

extrinsic factors take part in the expression of histological parameters. 

7.4.1. Sex variation  

As expressed in the previous chapter, the highlighted sexual and sample 

differences might be affected by sexual dimorphic patterns when the two samples 

were compared or by Cretan and Cypriots inter-variability when the two sexes were 

tested against each other. Therefore, conclusions are currently drawn based on the 

given sample and its implicit limitations.  

There is still an open debate regarding sex differences in histomorphometric 

variables with some studies reporting sexual differences (Samson and Branigan, 

1987; Ericksen, 1991; Burr et al., 1990; Cho et al., 2006) whilst other did not report 

any (Kerley, 1965; Thompson and Galvin, 1983; Han et al., 2009). The maturation 

rate of the cortex varies between sexes (Tanner, 1978). Whether the earlier 

completion of the cortex in females would have an impact on the histological 

variables and on the age estimates due to differences in the mean tissue age needs 

further investigation (Robling and Stout, 2008). In the early years of adulthood, 

males present around 40% larger bone areas than females which is also associated 

with their larger body size; a decrease in cortical area produced by periosteal and 

endosteal remodelling is observed for both sexes in the middle age (Riggs et al., 

2004). With aging, both sexes experienced a general decline in bone formation at 

the periosteal surface, and a reduction in bone formation and continued resorption 

at the BMU level which produces a negative remodelling imbalance (Seeman, 

2008). This imbalance gets triggered by the increase cortical remodelling which 
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accelerates cortical and trabecular thinning with interstitial bone becoming highly 

mineralised in postmenopausal women (Seeman, 2008). According to the literature, 

menopause causes an increase in bone loss, partly associated with estrogen 

deficiency, while men undergo the same process but in a slower rate (Frost, 2003; 

Khurana and Fitzpatrick, 2009). This would be a potential cause for the differences 

observed in histomorphometric parameters. Considering that 73% of the females in 

this sample are over 50 years old, some differences may be found due to 

postmenopausal associated osteoporosis and related bone loss. 

Several parameters accounted for sex differences in this research (see Tables 

5.23, 5.24 and 5.27),  in consensus with other studies (Ericksen, 1991; Mulhern and 

Van Gerven, 1997), although caution with microstructures definition and skeletal 

element used by the other authors must be bore in mind. 

Ct.Ar showed significant differences between sexes in this research which is 

in agreement with other studies (Takahashi and Frost, 1966). More specifically, 

females showed a lower number of secondary osteons compared to their male 

counterparts (see Table 5.24). This observation is in accordance with Ericksen 

(1991) who found that the number of secondary intact osteons reached a plateau at 

the age of  60 years in females while the number increases steadily with age in 

males. 

Differences were also observed for both Tt.Ar and Es.Ar between sexes. This 

can be simply a reflection of  sexual dimorphism in rib size in agreement with other 

studies carried out on Cretans and Cypriots that demonstrated substantial sexual 

dimorphism in other bones (Kranioti et al., 2008; Kranioti and Michalodimitrakis, 

2009; Osipov et al., 2013; Nathena et al., 2015; Kranioti et al., 2017). Furthermore, 

periosteal apposition is seen in postmenopausal women as an adaptive response to 

the decrease of cortical bone strength and increase in bone fragility (Ahlborg et al., 

2003). Szulc et al. (2006) proposed that after menopause an imbalance occurs with 

periosteal apposition decreasing while endosteal expansion increases at its 

maximum producing progressive fragility in the later years. A study using vertebrae 

demonstrated that bone loss for males is mostly associated to more periosteal 

apposition than to endosteal resorption (Seeman, 2001). Thus these differences 

may be due to a combination of factors including sexual dimorphism in rib size and 

hormonal influences. Supporting the size differences between sexes, Ct.Ar/Tt.Ar 

was not statistically different between sexes as it is an expression of Ct.Ar unrelated 

to body size (Stewart et al., 2015). 
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The remaining variables did not show any difference between sexes 

supporting the findings of other studies (Thompson and Galvin, 1983; Pfeiffer, 

1998). OPD is the most commonly used variable in age estimation equations, thus 

the existence of sexual dimorphism would greatly affect the applicability of 

histological age estimation methods. This study reported non-statistically significant 

differences between the two sexes but the contradicting results of other studies 

create the need for further research using larger samples to confirm or reject these 

observations (Cho et al., 2006; Kim et al., 2007). 

7.4.2 Sample variation 

Regarding Cretans and Cypriots, both samples share dietary and cultural 

habits and similar climate (Kranioti et al., 2017), so at first glance minor differences 

could be expected. However, several histomorphometric variables were found to 

vary within the two groups. Frequency number of osteons and Ct.Ar showed 

significant differences with higher values for Cypriots in comparison to Cretans. A 

possible sex effect could be influencing the samples differences as the same 

parameters were statistically significant between males and females. Among osteon 

population densities, only OPD(F) demonstrated differences between the two 

samples. It is worth noting that even if OPD did not show any statistical significant 

difference, the p-value showed a trend towards significance when age was not 

controlled as a covariate (p = 0.60). As noted above, OPD(F) seems to be the most 

powerful indicator of age and the highlighted differences might be because Cypriots 

presents a higher mean age than Cretans rather than inter-population variations. 

Nonetheless, On.Ar and On.Pm were also statistically significantly higher for 

Cypriots. This would mean that the aforementioned packing factor relating osteons 

number, osteon size and cortex dimensions – see Figure 7.6 – may be reflected in 

the patterns observed for OPDs between the samples (mean OPDs: Cretans = 

14.50, Cypriots = 16.30).  

Inter-sample differences in bone microstructure parameters may be attributed 

to several factors. As discussed in previous chapters, differences in bone mass and 

mineral densities between populations have been reported (Broman et al., 1958; 

Pollitzer and Anderson, 1989; Schnitzler, 1993; Anderson and Pollitzer, 1994). The 

crucial question remains as how and to what extent growth and development, 

genetic and environmental factors contribute to the perceived differences in 

histomorphometric structures. 

Cortical bone phenotypic traits – as cross-sectional area and density - are 

determined in the early years of life; however, during growth and development these 
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traits are also modulated by environmental factors as disease and life-style which 

will influence the amount of bone mass reached later in life (Cooper et al., 1995). 

For example, physical activity expressed as mechanical loading has an active role 

on cortical bone during pre-pubertal and early years of adulthood (Gosman et al., 

2011). Growth and maturation account for an increase in bone strength and stiffness 

with changes in chemical and collagen composition and structure having a 

determinant effect on posterior aging processes (Wang et al., 2002). Through one´s 

life and particularly in later adulthood, bone responds to age through a constant 

reconstruction of its microstructure in order to maintain material and functional 

properties. Remodelling imbalance processes occurring with advanced age will 

increase bone loss and skeletal mass degradation (Gosman et al., 2011). 

Polygenetic interactions and aging effects on the molecular and cellular processes, 

decrease of muscle mass and life style – among others factors – are responsible of 

inter-individual and inter-population variability  (Gosman et al., 2011). 

Bjørnerem et al. (2015) concluded that genetics influence both cortical and 

trabecular bone microstructure and remodelling markers up to 62%, although 

variations may exist depending on age, life style and on the skeletal part under 

examination (Pocock et al., 1987; Bjørnerem et al., 2015). Yet, the same type of 

genetic factors operates on weight bearing and non-weight bearing bones. In fact, 

bone mineral density is highly influenced by heritability which explains around 60% 

of the total variation in bone mass (Livshits et al., 1998).  

Some studies have reported some differences between Cretans and Cypriots. 

For example, Kranioti et al. (2017) found differences in tibial metrics for Cretans and 

Cypriots individuals in only two variables (maximum length and transverse diameter 

of the nutrient foramen) for both males and females. Along with possible sample 

effects, the authors suggested that the variation could be attributed to possible 

genetic differences between the two samples. In addition, a study on crania of 

Cretans, Greek-Cypriots and Turkish from Izmir showed slight differences between 

Cretan and Greek-Cypriots to the extent that they were merged as one group to 

develop ancestry estimation formulae (Kranioti personal communication). 

Early and recent research suggest little admixture between other populations 

and modern Cretans (Coon, 1954; Hughey et al., 2013). Actually, Cretans from 

Heraklion and Lasithi prefecture were found to be more closely related to Minoans 

than to Greeks from Chios, Euboea or Laconia (Hughey et al., 2013). Nathena et al. 

(2015) tested mainland Greek metric standards to estimate sex on the Cretan 

population obtaining high errors of misclassification which could be attributed to 
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biological differences or sample effects. Regarding Cypriots, genetic studies have 

revealed that 23% of their DNA is correlated to Greek markers and 14% to Iranian 

markers. Yet, they seem to cluster closer to Greeks from Laconia, Chios, Euobea 

and Byzantine populations than from Cretans (Hellenthal et al., 2014). Heraclides et 

al. (2017), on the other hand, suggests that Greek-Cypriots and Turkish-Cypriots 

share a common pre-Ottoman paternal linage. The closest affinity between Greek-

Cypriots and seventeen different populations (Europe, North Africa and Middle-East) 

was found for Turkish-Cypriots (27% common haplotypes), followed by Greeks, 

Albanians, Lebanese and Italians (ranging from 5-3%). In contradiction with 

Hellenthal et al. (2014), Heraclides and colleagues (2017) suggests that the closest 

genetic proximity between Cypriots and sub-groups of Greeks is with Cretans-

Greeks which might be explained by similar migratory history between the two 

islands. However, this research did not explore the differences within the Cretan 

population (e.g. different areas from the island) and a larger sample of Cretans and 

Aegean islands individuals is required to verify the highlighted genetic influences 

between Greek-Cypriot and the Cretan populations (Heraclides et al., 2017). In 

addition the latter study is focusing on Y-haplotypes while the first on SNPs which 

may be the reason for what appear to be slightly contradicting results. Anyhow, the 

extent of genetic similarity of the two samples does not guarantee aetiology for the 

differences in the histomorphometric variables as it is not possible to explore if they 

are controlled by any potentially common genetic markers between the samples. 

This topic definitely deserves further investigation. 

It seems adequate to compare environmental factors such as diet and lifestyle 

between the two samples as these aspects may help to explain remodelling 

dynamics (Richman et al., 1979; Ruff et al., 1984; Mulhern and Van Gerven, 1997; 

Pratte and Pfeiffer, 1999; Paine and Brenton, 2006). The Cretan diet consists of a 

high consumption of vegetables, whole grains, nuts, fruits, olive oil and moderate 

consumption of fish (Porrini, 2013). Although being reduce in the past years, the 

importance of agriculture in the island´s economy has implied a regular physical 

activity that in combination with the Mediterranean diet may have induced to low 

coronary disease propensity and low rates of obesity (Willett et al., 1995). The 

Cypriot dietary habits are also based on the traditional products of the 

Mediterranean diet, and thus, closely related to general Cretan eating patterns. The 

Mediterranean diet is one of the heathiest in the world with low rates of morbidity 

and mortality (Caretto and Lagattolla, 2015). In the last 50 years the inclusion of 

western food, however, may have resulted in a decrease in the health status in 

Crete (Vardavas et al., 2010). In Cyprus, dietary habits started to shift at the 
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beginning of the 20th century with an increment of the importation of foodstuffs 

(Kazamias and Panayiotou, 2015). Nutritional disorders as vitamin deficiencies or 

malnutrition episodes can affect remodelling resulting in lower rates than the 

expected (Paine and Brenton, 2006a). Besides, alcohol intake has been 

demonstrated to produce a considerable impact reducing bone formation rate and 

turnover and a high risk factor for osteoporosis (Ortner, 1970; Pratte and Pfeiffer, 

1999; Iwaniec et al., 2008). For example, chronic alcoholism is not an issue in 

Greece but daily alcohol intake seems to be very common  (Liakos et al., 1980; 

World Health Organization, 2014). Further research including individuals´ life story 

and habits would provide new insights about their impact on the observed results.  

One of the means to understand the levels of physical activity among the two 

samples is to explore their economy. One of the most important economic activities 

in the island of Crete is agriculture (Chartzoulakis and Psarras, 2005). Nonetheless, 

at the end of the 20th century there was a noticeable decrease of production from 

the primary sector (agriculture) in favour of industry and energy (in second place), 

and the highest increase and development being observed in the contribution of 

Trade and Tourism activities. These changes in economy imply also a drift in 

occupational activities with an employment reduction from 76% to 48% in the 

primary sector in favour of an employment increase in industry, tourism and finances 

(www.crete.gov.gr). Changes in lifestyle and an increase in tourism industry have 

produced a reduction in physical activity and this may have had an impact on the 

population health.  To illustrate this, Cretan farmers over 40 years old seem to have 

increased their body mass index (BMI) by seven points from the 1960 to 2005 

(Hoffman and Gerber, 2012).  

In Cyprus, the general economy of the country grew after the II World War.  

Agriculture has been the main economic activity with 60% of the exportation being 

agricultural products in early 1960 (Panagides, 1967). After the Turkish invasion and 

the consequent division of the Republic of Cyprus into Turkish northern area and the 

southern Cypriot area, the economy experienced several drawbacks resulting in a 

rise in unemployment (30%) and increase in poverty levels. It was in the last two 

decades, when the economy focused on tourism and all related sectors favouring, 

for example, women active participation (50% at the present to under 29% before 

the conflict) (Edoc.coe.int/en, 2013). Manufacturing seemed to improve during 1980 

becoming the second source of employment, although poor working conditions and 

poor products quality would become an obstacle for future industrial development. 

The third economic sector (construction) also experienced a real input when tourism 

started being one of the main economical motors (Solsten, 1991).  
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Burr et al. (1990) conducted a femoral histological study between an 

archaeological native American population and modern samples suggesting that 

higher OPD values might be an indicative of higher physical activity. Whether non-

weight bearing bones such as ribs could also reflect this pattern is unclear. Other 

factors rather than the differences in biomechanical response such as intrinsic 

remodelling rates and metabolic activity between different skeletal sites may 

influence the expression of the histomorphometric parameters (Pfeiffer, 1998; 

Pfeiffer et al., 2006).  

Pathological conditions may cause alterations in the normal physiological 

appearance of bone tissue. De Boer and Van der Merwe (2016) conducted an 

extensive review in histological diagnosis of pathology on dry bone. The authors 

state that dry bone histology can be a valuable approach in combination with other 

diagnostic tools as the pathognomonic signs may disappear as the bone tissue 

dries. The histological slides used in this research were examined for sings of 

abnormal histomorphology that can be discerned through the methodological 

approach applied (De Boer, Van Der Merwe and Maat, 2013). If alterations in bone 

microstructures were found, the specimens were removed from the sample (see 

Appendix A2). However, thin cortical areas were common among the sample. In the 

lack of medical history, it was assumed to be part of the normal aging process rather 

than a pathological disorder. On the other hand, various pathologies may have not 

been diagnosed by the time of death of the individual. Other factors such as drug 

consumption, disease periods, genetic disorders or specific mechanical usage or 

disuse are well-known to affect remodelling rates (Frost, 1987b). Unfortunately, this 

could not be deduced from the material under study.   

7.5. Rib histological population-specific formulae for the Mediterranean 

sample 

The ultimate research goal of this study was the generation of rib histological 

age estimation method. As seen in the validation study, most of the histological 

aging equations tested did not perform accurately on the Mediterranean samples. 

Therefore, it was expected that population-specific formulae could provide better 

results. For this purpose, the histomorphometric parameters were regressed onto 

age using different datasets in order to select the models that better fit the data as 

assessed by prediction accuracy and goodness of fit indicators. 

A total of forty-one regression models were generated using the entire dataset 

and sub-datasets (sexes and Cretans and Cypriots, separately) (Table 5.30-37).  

The rationale of such a wide range of models was to explore which parameters 
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could predict age more accurately on the sample/s under study. However, one 

needs to consider possible drawbacks in the assessment of some of the variables 

included (see for example OPD(F) versus osteon measurements inter-observer 

errors). Practical aspects of the application of the models were considered and the 

equations that included OPD(F) as a variable were discarded at the final stage of 

the analysis. 

Among all the generated models, twelve were selected as the best according 

to measures of dispersion and goodness of fit values (Table 5.37). Several 

indicators as the coefficient of determination (R2) and standard error of the 

estimates were assessed. These values are normally reported by histological age 

prediction studies in order to give the reader an indication on how well the model fits 

the data and what prediction interval error should be expected when estimating age 

through the proposed equations (Maat et al., 2006; Han et al., 2009; Goliath et al., 

2016). Based on the sample size and the possibility of using other indicators 

equivalent to cross-validation, another methodological approach was used in this 

study by the incorporation of AICc and BIC values. These parsimony indicators 

helped in multi-model inference by comparison of their values (the smallest, the 

best). The difference between AICc values can be compared (smallest AICc minus 

AICc from remaining models) in order to rank the models generated (Burnham and 

Anderson, 2004).  In practise, they are both important because they estimate both fit 

of the data and complexity of the model (Aho et al., 2014). AIC approach is based 

on minimizing prediction error and model overfitting or underfitting (noise or bias that 

will be introduced in the model if used for future predictions), while BIC indicates the 

correct model consistently – as it is not influenced by sample size – based on all the 

possible given models (Aho et al., 2014). Due to all these reasons, the mentioned 

parsimony indicators were chosen to test all the selection models created in the 

present study. However, the cross-validation approach could be further examined on 

the sample under study. This technique is commonly used in regression analysis, 

although validation set sample size and number of estimators needs to be 

considered to produce consistent results (Zhang and Yang, 2015). The main 

purpose of cross-validation techniques is to avoid overfitting of the model, and 

although it was assessed by the AIC indicator and it is a valid approach to assess 

overfitting (www.petrkeil.com), cross-validation would give specific percentages of 

prediction accuracy. Therefore, this statistical approach could further clarify the error 

expected when the formula is applied to estimate age of an unknown individual.  

In real life, some practitioners might prefer a complex model that provides 

more anthropological information but is less accurate to a simplistic model reflecting 
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less biological information but performing more precisely in aging an individual. The 

optimal choice depends on the question that needs to be answered. An overview of 

the methodological approach adopted in this study can be seen in Figure 4.11. 

Figure 7.7 presents a summary graph for the best twelve models selected with 

the values for goodness of fit indicators and inaccuracy rates as previously 

calculated (Lovejoy et al., 1985b). For the entire sample, Model 13, 15 and 25 

provided very similar values with a difference in AICc of 5 points leading to a 

plausible hypothesis that all models are adequate for the given dataset  (Burnham et 

al., 2011). Considering all the estimated values, the models that best explain the 

data are Model 13 and Model 15 which included OPD and osteon size and shape 

providing the lowest inaccuracy (Figure 7.7A). In the case of a less experience 

observer having difficulties in assessing OPD, Model 25 is recommended as it 

yielded also acceptable accuracy and goodness of fit values. If the sex of the 

individuals is known, the use of sex specific prediction equations (Model 29 and 

Model 33) is recommended since they provide slightly more accurate results than 

the general equations. The best single model for males included OPD and On.Cr, 

while for females Model 33 (On.Cr and Ct.Ar) would be selected according to R2, 

AICc and BIC values (Figure 7.7B).  

 

Figure 7.7 Graphs showing differences in Goodness of Fit indicators (R2, AICc, BIC) 

for the best selected models for the entire sample (A). SEE= standard error of the 
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estimated. Models inaccuracy (parenthesis; y.=years). R2 is presented here as a 

percentage. 

 

 

Figure 7.7. (Continued) Graph showing differences in Goodness of Fit indicators (R2, 

AICc, BIC) for the best selected models for Males (B) and for Cypriots (C).   
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As seen in the Results chapter, Cretans did not show any improvement when 

the Cretan sub-dataset was used for the generation of sample-specific models. On 

the other hand, Cypriots did produce better results. The Cypriot sample is more 

homogeneous that the Cretan sample due to both males and females presenting a 

similar mean age and thus producing lower standard errors. As seen in Figure 7.7C, 

OPD and On.Pm (Model 40) would be the most optimal choice for estimation of age 

in a Cypriot individual obtaining the lowest inaccuracy from all the tested models. 

The same principle applies here for the use of Model 41 to avoid the assessment of 

osteons densities by an inexperienced anthropologist. The twelve best models 

reported very similar prediction and accuracy values indicating that all of them are 

suitable to estimate age on the sample under study. As discussed, a closer 

examination of inaccuracy rates along with goodness of fit values suggested that 

Models 13, 15, 25, 29 33, 40 and 41 can be more appropriate (Table 7.2). 

It seems relevant to remark that most of the selected models included osteon 

population densities and/or osteon measurements as predictors. This indicates that 

even if OPD is still one of the best predictors, the addition of osteon size, perimeter 

and shape improves considerably the prediction power of the method. These 

parameters are known to have negative and positive relation to age (respectively) 

and they are not affected by any asymptotic effect as OPD is. Hence, their inclusion 

in histological techniques to estimate age in old individuals is recommended (Goliath 

et al., 2016). On.Pm was also selected as a powerful age predictor in other studies 

(Watanabe et al., 1998). It is worth mentioning that the combination of osteon size 

and/or osteon shape and cortical area produced the best results for the female sub-

sample. As discussed earlier, Ct.Ar decreases with age and sexual differences are 

noted with females experiencing a higher thinning in the cortex than males –more 

marked after menopause (Russo et al., 2006). Considering the mean age for women 

in the Mediterranean sample, the use of this parameter for estimating age in females 

seems reasonable.  

Inaccuracy values have been highly improved in comparison with the results 

obtained from the validation pilot study. Estimated ages and know ages were tested 

for statistical significance and none of the p-values were over the 0.05 threshold. 

Estimated ages across the age span were also examined and a general pattern of 

overestimation for young individuals (under 40 years of age) and underestimation of 

oldest individuals (over 80 years of age) was observed which is a standard result of 

least-squares regression (Martrille et al., 2007; Nawrocki, 2010). However, when the 

samples were divided in under and over 60 years old age groups, an even 

distribution of inaccuracy and bias was seen with slightly higher values for the 
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younger age cohort (Table 7.2). Besides, a negative bias is observed for the oldest 

age cohort reflecting the underestimation of individuals over 80 years old. The 

lowest inaccuracy and bias was obtained for individuals from 40 to 79 years since 

the overall mean age of the sample falls within that age range.   It is likely that future 

predictions will produce higher error in individuals under 40 years old due to the low 

number of cases included in the Mediterranean sample. A larger sample size of 

young individuals is required for further developed this aging method and achieve a 

more accurate reflection of the population. 

Table 7.2  Inaccuracy and bias values for best final Models: entire sample, sexes and 

Cypriots sub-samples. 

 
Entire sample Males Females Cypriots 

 
Model 13 Model 15 Model 25 Model 29 Model 33 Model 40 Model 41 

 
Inac Bias Inac Bias Inac Bias Inac Bias Inac Bias Inac Bias Inac Bias 

<
< 60 

9.11 4.83 8.53 4.06 9.62 5.38 8.62 8.62 7.41 4.32 5.65 3.09 6.73 4.05 

>
> 60 

7.82 -3.85 7.47 -3.23 8.19 -4.29 6.59 -2.98 8.92 -3.65 6.03 -1.92 6.06 -2.51 

Inac.= Inaccuracy 

In summary, the results produced by the twelve best models are comparable 

to other studies using rib histomorphometry for age estimation (refer to Table 3.2). 

The histological parameters are used as predictors of chronological age, here 

understood as the length of time that the individual has lived. The biological age of 

the individuals (referred here as physiological age) is not perfectly associated with 

chronological age and this association gets less precise in elderly individuals. This 

phenomenon, known as the “trajectory effect” (Nawrocki 2010: 88), implies that 

biomechanical and physiological changes in the aging indicators undergo more 

alterations as the later years in the life span are approaching. These complex 

interactions make us expect more errors associated to samples of advance age. 

Even if this is the case, older individuals are now found in most of the populations 

and increasing in number. Hence, anthropological methods for this specific age 

cohorts are currently required (Ice, 2003).  

7.5.1. Anthropological standards and research on the Cretan and Cypriot 

Collections 

Extensive anthropological research on the Cretan Collection has been carried 

out in the last two decades. A wide range of studies have focused on the 

development of sex estimation population specific-standards (Kranioti et al., 2008; 

Kranioti and Michalodimitrakis, 2009; Osipov et al., 2013; Kranioti et al., 2014; 

Nathena et al., 2015; Kranioti, 2017). Others have examined the application of novel 



www.manaraa.com

 

239 
 

computerised method to sort commingled remains (Tsiminikaki et al., 2017) or 

validated existing age estimation macroscopic methods on the Cretan Collection 

(Michopoulou et al., 2017). In addition, age estimation methods based on rib 

biomechanical properties were developed from autopsy samples in Crete (Bonicelli 

et al., 2017). 

The recent access to the Cypriot Collection has promoted research on 

different topics like discrete non-metric cranial trait analysis (Almeida Prado et al., 

2016) or differential diagnosis of reactive arthritis on a Cypriot individual (Cawley 

and Paine, 2015). Sexual dimorphism on the tibia was investigated and sex 

population-specific standards developed for this population (Kranioti et al., 2017). 

Furthermore, a validation study tested reliability of existing sex estimation formulae 

developed from South European standards obtaining acceptable levels of accuracy 

for the Cypriots (García-Donas, Ekizogu, Bozdag et al., 2017). 

Thereby, active research has been and is being performed in order to develop 

new anthropological methods, validate the existing ones and explore methodological 

applications. This thesis aims to be a new contribution to the mentioned 

investigations. The research presented here is the first exhaustive study conducted 

on the Cretan and Cypriot samples for age estimation through histological analysis 

and offered age estimation standards to assist in the creation of biological profiling 

and identification in future forensic cases. This contribution is especially important 

for the Cypriot sample since there are still around 1500 Greek-Cypriot missing 

individuals to be identified (www.cmp-cyprus.org).  

7.6 The Mediterranean samples and other populations: histomorphometric 

parameters comparison  

Histological studies have demonstrated different remodelling rates between 

and within populations, and lower reliability have been reported when a population-

specific equation was applied to an independent sample (Burr et al. 1990; Stout and 

Lueck 1995; Crowder 2005; Cho et al. 2006; Kim et al. 2007; Pavón et al. 2010; 

García-Donas, School, Paine et al., 2017). 

Table 7.3 summarises rib histological values from published studies and for 

the Mediterranean samples. Note that the qualitative comparisons are limited to the 

data provided by the original methods and the variables assessed in the present 

research. Possible intrinsic and extrinsic factors affecting bone remodelling rates 

have been discussed along the course of this thesis. Thus, only the relevant 
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information gathered from the similarities and/or differences between published data 

and this research will be presented here.  

First, none of the communities from which the rib histological standards for 

age estimation were created can be considered closely related to the Mediterranean 

samples. Generally speaking, one could assume that American samples coming 

from European ancestries might reflect less genetic differentiation with the Cretan 

and Cypriot samples than the other populations. This would be the case for the 

studies conducted by Cho et al. (2002) European-Americans sample  and Goliath et 

al. ‘s sample (2016) (Table 7.3). Cho et al. (2002) OPD value is relatively higher 

than the ones obtained by the samples under study. On the other hand, their sample 

accounts for a slightly higher On.Ar and a comparatively larger Ct.Ar. The 

Mediterranean sample is just slightly younger than Goliath et al. (2016) making the 

comparisons more feasible. The values suggest that OPD is considerably higher 

than the obtained for the Mediterranean sample but also On.Ar is noticeable smaller. 

Ct.Ar is not reported by this study but considering the aforementioned packing 

effect, a higher OPD for the European-Americans would be expected with such as 

small osteon size.  

Observing the reported values for the histomorphometric variables regardless 

population affinity, the least difference in magnitude among the Mediterranean 

samples and the other populations was observed for the data provided by Stout et 

al. (1994), Stout and Lueck (1995), Pratte and Pfeiffer (1999), Muhlern (2000) and 

Paine and Brenton (2006). Paine and Brenton (2006) reported the lowest OPD for 

the Black South Africans, among all the studies under consideration (OPD= 13.50) 

(Table 7.3). All these populations mean age is around 40 years old except for Pratte 

and Pfeiffer (1999) and Paine and Brenton (2006) that are closer to the 

Mediterranean samples which might make comparisons between the samples more 

convenient.  

Pratte and Pfeiffer (1999) applied two existing formulae to their South African 

sample – one of them Stout and Paine (1992) – obtaining a systemic 

underestimation of age. In addition, OPD values obtained by the target sample were 

lower than the ones reported for the reference samples. Along with genetic and 

intrinsic methodological factors, the authors attribute this outcome to the fact that 

part of the sample is supposed to suffer from alcoholism and/or malnutrition. This 

may have caused a decrease in remodelling rates, and thus, resulted in the low 

OPD (Pratte and Pfeiffer, 1999). Moreover, OPD and age were not statistically 

significantly correlated (only for males older than 50 years of age), possibly due to 
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the general health condition of the sample.  Paine and Brenton (2006) also tested 

Stout and Paine (1992) method on a South African Black sample, reporting again an 

underestimation of the individuals´ age. Health status and dietary disorders are 

pointed out as the causes of a slowdown in bone turnover rates producing low 

osteon densities and inaccurate age estimates. However, as already mentioned, 

other studies demonstrated a systematic underestimation when using this particular 

equation with no reported or apparent health issues in their samples (Crowder, 

2005; Kim et al., 2007).  

Taking this under consideration, the question now remains whether 

pathological disorders are partly responsible for the osteonal density reported for the 

sample under study. Due to the lack of complete medical history, consistent 

reporting of medical conditions and cause of death in the medical certificates, and 

the absence of census data along with the fact that pathology could have gone 

undiagnosed at the time of death; such hypothesis cannot be tested properly. In 

addition, the risk of pathology bias should be similar for both samples taking into 

account the age range and social and cultural status. Modern collections may be 

biased towards specific demographics depending on cultural and social reasons 

(e.g. who donates the human remains and why) (DiGangi and Moore, 2013). Except 

for the seven autopsy samples, both samples come from cemetery populations 

which may represent individuals with a low-socioeconomic background resulting in 

poorer health and deficient diets. It is worthy to remark that individuals from both 

samples died between 1960 and 2003; the consequences of political conflicts such 

as the German invasion of Crete in the mid 40´s or the Turkish invasion of Cyprus in 

the mid 70´s had economic and social repercussion for the inhabitants of both 

islands (Edson, 1967; Papadakis et al., 2006). 
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Table 7.3 Histological parameters values (mean and standard deviation) for rib 

histological studies and the Mediterranean sample. 

Author/yea
r 

Histomorphometric reported values  
Demographics 

Age Ethnicity / other information 

Stout and 
Paine 
(1992) 

On.Ar = 0.039 
Ct.Ar = 22.36 

28.6 (SD ± 12.9) Mostly American whites 

Stout et al. 
(1994) 

OPD = 16.01 (SEM ± 0.73) 38.51 
Iscan et al. (1984a; 1984b) 

sample 

Stout and 
Lueck 
(1995) 

OPD = 18.8 (SEM ± 1.07) 34.9 (± 3.09) 
Modern sample from Stout 

and Paine (1992) sample 

Pratte and 
Pfeiffer 
(1999) 

OPD = 15 ± 3.26                                                         
Ct.Ar= 18.10 ± 5.03 

62 (range 24-95) 
South Africans-Cape Town 

(black, white and coloured), 
possible pathology 

Mulhern 
(2000)* 

OPD = 14.24 (SEM ± 0.07) 15-50 Nubian  

Cho et al. 
(2002) 

OPD = 18.70 (SEM ± 0.71)                                                 
On.Ar = 0.039 (SEM ± 0.001)                                            
Ct.Ar = 21.43 (SEM ± 0.73)                                                                  

Ct.Ar/Tt.Ar = 0.343 (SEM ± 0.023) 

38.18 (SEM ± 2.97) 
European-Americans; includes 
Stout and Paine (1992) sample 

OPD = 20.10 (SEM ± 0.97)                                                
On.Ar = 0.036 (SEM ± 0.001)                                               
Ct.Ar = 20.92 (SEM ± 0.75)                                      

Ct.Ar/Tt.Ar = 0.350 (SEM ± 0.015) 

50.69 (SEM ± 2.27) African-American 

Paine and 
Brenton 
(2006) 

OPD = 13.54 50.20 
Dart Collection, South Africa; 

38% died from pellagra  

Kim et al. 
(2007) 

OPD = 21.60 ± 6.58                                                       
On.Ar = 0.021 ± 0.005                                               

Ct.Ar/Tt.Ar = 0.333 ± 0.088                                   

Males: 44.8 (± 11.7)                                                       
Females: 38.6 ± 11.1) 

Koreans 

Pavón et al. 
(2010) 

OPD = 28.76 ± 6.48                                                          
On.Ar = 0.03 ± 0.007                                                             
Ct.Ar = 18.07 ± 4.83                                                  

Ct.Ar/Tt.Ar = 0.35 ± 0.10 

43.8 (range 20-87) 
Mayan population; mostly 

males 

Goliath et 
al. (2016) 

OPD = 23.52 ± 5.93                                                           
On.Ar = 0.024 ± 0.009                                                       
On.Cr = 0.905 ± 0.014 

62.96 ± 10.21 
European-Americans; 52% 

died from cancer 

Pfeiffer et 
al. (2016) 

OPD = 19.90 ± 5.30                                                          
On.Ar = 0.034 ± 0.008                                                       

Ct.Ar/Tt.Ar = 0.38 ± 0.011 
47.96 ± 15.70 

South Africans (Cape Town: 
black, white and coloured) 

Sample 
under study 

OPD = 15.44 ± 4.35                                              
On.Ar = 0.032 ± 0.009                                         
On.Cr= 0.910 ± 0.021                                               
Ct.Ar = 19.21 ± 7.97                                                 

Ct.Ar/Tt.Ar = 0.319 ± 0.121                                 

All: 60.33  ± 17.89                       
 

Mediterranean samples 
(Cretans and Cypriots) 

OPD = 14.50 ± 4.49                                                
On.Ar = 0.030 ± 0.010                                          
On.Cr = 0.906  ± 0.023                                                                                 

Ct.Ar = 17.74 ± 7.63                                                   
Ct.Ar/Tt.Ar = 0.316 ± 0.132                                         

Cretans:                   
57.50 ± 21.17                                           

OPD = 16.26 ± 4.09                                               
On.Ar = 0.033 ± 0.009                                            
On.Cr = 0.913 ± 0.019                                              
Ct.Ar = 20.49 ± 8.13                                                 

Ct.Ar/Tt.Ar = 0.326 ± 0.113                                 

Cypriots:                   
62.81 ± 14.20 

N/A=not available, SEM= standard error of the mean, * Archaeological sample.  
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Assuming that, to some extent, dietary disorders might have be the cause of 

the low OPD, it could be presumed that both Cretans and Cypriots would suffer from 

this nutritional deficiency as they share the same dietary habits. 

 Heinrich (2015) examined nutritional and physiological stress differences in 

rib cortical bone microstructure on a sample of heterogeneous origins (Canada, 

Unites States and South Africans). Comparing low and high stress males groups, a 

lower OPD(I) and OPD was observed for the group suffering from chronic nutritional 

and physiological stress. Moreover, a negative shift is reported for OPD(I). 

Nonetheless, male OPD(I) and OPD did show a similar rate of change throughout 

age. This suggests that even if values were lower between the male sub-groups, 

nutritional and physiological stress does not alter dramatically bone modelling and 

remodelling rates during adulthood. The author proposed that the mentioned 

histological differences might be a reflection of nutritional and physiological stress 

delaying growth spurt and peak bone mass during adolescence producing a 

relatively younger mean age tissue that the healthy individuals. Consequently, no 

stress effect on the remodelling rates and age is seen in the later years of life. 

Additionally, no differences for any of the OPDs were found for low and high stress 

females groups indicating that female may respond differently to chronic nutritional 

and physiological stress due to an earlier timing of puberty and lower growth rate 

during adolescence (Heinrich, 2015).  

Table 7.4 Comparison of Heinrich (2015) high nutritional and physiological stress 

samples with the Mediterranean sample. 

 
Age OPD(I) OPD(F) OPD On.Ar Ct.Ar 

 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

M* 45.86 16.79 9.95 1.99 6.43 2.71 16.37 4.17 0.041 0.010 26.09 7.32 

M 60.10 16.52 9.40 2.02 6.10 2.66 15.74 4.08 0.032 0.009 21.16 8.63 

F* 45.38 15.67 11.03 1.97 6.91 2.85 17.94 4.36 0.040 0.001 25.36 5.91 

F 60.52 19.11 8.98 2.40 6.43 2.74 15.42 4.60 0.031 0.010 17.59 7.06 

M=Male, F=Female, Grey coloured= Heinrich (2015) values; SD= standard deviation 

Table 7.4 summarises the values between sexes for the high nutritional and 

physiological stress sample and for the Mediterranean sample. The values obtained 

for OPD(I), OPD(F) and OPD are very similar between Mediterranean males and 

Heinrich males (2015), but slightly different values are observed for females 

particularly for OPD(I), and OPD. This outcome might reflect post-menopausal age-

related alterations on bone turnover and thinning of cortical area (notice mean age 

and Ct.Ar differences for the samples) (Feng and McDonald, 2011). Mediterranean 

females over the post-menopausal window (N = 35, Mean age = 69) produced an 
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OPD(I) of 9.5 and a OPD(F) of 7.65 (OPD = 17.10). When compared to healthy 

individuals, postmenopausal females with symptomatic osteoporosis showed rather 

small osteon size, a reduced average number of intact osteons and an increase 

average of fragmentary osteons; moreover, bone formation rates fell below 

expected (Wu et al., 1970). A different pattern in the observation of osteon 

frequency number was seen for both sexes and samples which could be indicative 

of age related resorption-formation imbalance resulting in osteoporosis for both 

sexes and increased in women due to postmenopause (refer to Figure 7.5). 

According to Thompson (1980), intracortical porosity in men is attributed to higher 

number of osteons whilst in females is due to larger Haversian canals. Influences of 

the samples when comparing the sexes and vice versa could hide the within sub-

samples variability. A more quantitative approach such as Haversian canal 

measurements should be performed to test this hypothesis (De Boer and Van der 

Merwe, 2016). 

While considering other pathological conditions in the Mediterranean sample, 

a pilot study conducted by the author and colleagues on Cretans and Cypriots 

individuals demonstrated that healthy individuals and individuals affected by chronic 

metabolic diseases produced different results for osteons densities (Lill et al., 2017). 

OPD obtained by the metabolically affected sub-group did not show any correlation 

to age while the healthy sub-group did produce a positive statistical significant 

association. This is consistent with the Pratte and Pfeiffer (1999) results. For the 

Mediterranean sample under study, osteon population densities demonstrated a 

positive moderate to strong correlation to age in accordance with the healthy 

individuals trend (Lill et al., 2017). 

At this stage, it seems reasonable to find another potential factors contributing 

to the OPD value reported by this research. Stout and Lueck (1995) stated that 

different effective age of adult compacta may provoke differences in OPD values. 

This would imply that skeletal maturity has been reached at an earlier or later age; 

thus, the mean tissue age would present higher or lower osteons population 

densities, respectively, since it had more or less time to accumulate in the cortex 

(Frost, 1987a; 1987b). The effective birth of age of rib adult compacta is estimated 

to occur around 12.5 years old (Wu et al., 1970). Mechanical usage during growth, 

genetics, sex, nutrition, activity levels and skeletal site – among others –are possible 

factors impacting the age at which the adult cortex would be complete (Wu et al., 

1970; Burr et al., 1990; Robling and Stout, 2008; Cho and Stout, 2011).  
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Growth and maturation rates differ between sexes and between populations 

(Crowder and Austin, 2005; O’Connor et al., 2008). Multiple factors that incorporate 

genetic and environmental influences play a significant role on skeletal maturation. 

For example, a delay of almost 2 years was observed in children from low socio-

economic status and poor nutrition (Frisancho et al., 1970).  Genetic inputs, 

however, seems to be crucial: an earlier maturation in Bosnian than in American 

adolescents was seen despite the adverse living circumstances of the former due to 

political conflicts (Schaefer and Black, 2005). Whether skeletal growth is different in 

the Mediterranean samples, and therefore, a more prolonged duration and slower 

rate of cortical drifts resulted in an older effective age of adult compacta and lower 

osteon densities needs to be further explored.  

Supporting inter-population variation, several facts can be drawn to attention 

from the data gathered in Table 7.3. The OPD asymptotic value is reached when 

osteonal bone occupies the entire cortex and previous evidence of osteonal 

structures are removed (Frost, 1987b). The highest OPD value for the entire 

Mediterranean sample is reported to be 25.63 (On.Ar = 0.025) for the 100-year-old 

female individual. The highest OPD value for Pavón et al. (2010) is 43.05 (On.Ar = 

0.033) for the second oldest individual in their sample (84 years old). None of the 

OPD values from the sample used by Goliath et al. (2016) exceeds the average 

value of 30 with the exception of an outlier reporting an OPD of 42.30. Overall, the 

asymptotic value for OPD was different between the populations. Again this may be 

a subject of sample variation or could be attributed to the removal of outliers which 

is a common strategy in many studies (Stout et al., 1994; Lynneru et al., 2006; 

Crowder, 2013). 

Further population differences can be discerned from Kim et al. (2007) and 

Pavón et al. (2010) studies which have same age and sex distribution but differ in 

ethnic origin. The mean OPD for Korean males is 23.82 (± 6.56) with a mean On.Ar 

of 0.019 mm2, while the Mayan males present an OPD of 28.76 (± 6.48) with a 

mean On.Ar of 0.03 mm2.  Comparisons between Mayans and African-Americans 

result in larger differences yet, demographics are also slightly different (Cho et al., 

2002).  

At this stage the author would like to make the last remarks.  Firstly, some 

individuals in the sample showed lamellar bone at ages in which this type of bone 

tissue should have been replaced by secondary osteonal bone (Figure 7.8). 

Whether this is a physiological trend in the samples under study or the expression of 

some kind of disorder needs further examination. Secondly, only 25% of the 
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individuals are under 50 years old in the Mediterranean sample. Remodelling seems 

to experience a decrease around the seventh decade (Allen and Burr, 2013). 

Considering that the asymptotic effect will remove past-remodelling events in ribs 

around 50-60 years of age, a lower OPD, at least to some extent, should be 

expected as a result of the asymptotic bias.  Nevertheless, cortical area does not 

change in a perfect linear proportion to the increment of age introducing additional 

variability to the parameter.  

Based on the data obtained from the published studies and the present 

research, interesting patterns were seen for osteonal remodelling between the 

samples. Genetics partly determine bone mass, density and bone turnover 

(Schnitzler, 1993; Cho et al., 2006). An interaction between genetic influences and 

environmental factors during growth and development is also crucial for bone 

material and functional properties later in adulthood. Other factors such as age, sex, 

hormones, metabolic and genetic disorders, mechanical usage or disuse, nutrition 

and regional trauma are known to play a direct or indirect role in osteonal 

remodelling (Frost, 1987b). Exhaustive measurements of bone formation rates and 

activation frequencies from different and heterogeneous populations are required to 

provide more insight from the findings obtained from this research and the other 

histological studies.  
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Figure 7.8 Examples of ribs from the sample showing lamellar bone: Cypriot female 

48 years old (top left) and Cretan female 98 years old (top right) (semipolarised 10x); 

Cypriot female 56 years old (bottom) (40x). 

7.7. Revised technique for the preparation of dry bone thin-sections  

In microscopic studies, appropriate data collection relies on the quality of the 

thin-sections. Over the years,  methods addressing the production of histological 

slides have been developed that attempt to improve the state of art (Chinsamy and 

Raath, 1992; Beauchesne and Saunders, 2006; Paine, 2007; De Boer, Aarents, 

Maat et al., 2013). The technique proposed here is a combination of existing 

methods (Caropreso et al., 2000; Tiesler et al., 2006; Paine, 2007), and it was 

developed based on the type of bone used, the equipment and consumables 

available at the histology laboratory and the research question. This revised 

methods is equivalent to other published studies since it produced the same high-

quality thin-sections (Paine, 2007; Crowder et al., 2012). However, the number of 
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steps required and the amount of consumables needed has been reduced improving 

time efficiency and decreasing costs. There is still need to test the technique on 

other types of bone such as femora where a higher porosity and a large cross-

sectional area of cortical bone may cause technical issues when using the glass 

slide or the resin applied for ribs (García-Donas, Dalton, Chaplin et al., 2017). 

7.8. Conclusions 

Estimation of age is a critical step in the identification process of unknown 

human remains. Several anthropological age estimation techniques are available for 

the expert and the choice of the methods depends on the skeletal element, the 

preservation of the bone and the equipment available. When laboratory facilities and 

equipment are available, microscopic methods can be successfully conducted for 

age estimation since they have shown similar levels of accuracy as the traditional 

macroscopic approach (Garvin et al., 2012). Some occasions laboratory based 

methods have been considered more reliable (Bonicelli et al., 2017). Yet, several 

limitations regarding their application may be an obstacle in the routine use of 

histological analysis. 

Firstly, the method itself requires specific equipment and training for the 

preparation of the thin-sections and for the interpretation of the variables. This 

implies an impediment when compare to the relatively easy and inexpensive gross-

examination of morphological age indicators. Regarding histological variable 

selection, caution is warranted in interpreting specific parameters due to high levels 

of inter-observer error being reported (Lynnerup et al., 1998). Henceforth, other 

types of approaches introducing technological innovations for data collection should 

be investigated (Cooper et al., 2007; Rose et al., 2012) and the incorporation of 

variables expressing more precise relation to age should be tested (Bonicelli et al., 

2017). Secondly, some bias might be introduced due to intrinsic and extrinsic factors 

affecting in different degrees the skeletal elements and the topographical locations 

within the same bone (Pfeiffer et al., 1995). Thirdly, histological age estimation relies 

on the fact that remodelling events accumulate in the cortex throughout one´s life 

and can be assessed through quantitative analysis. However, sex and inter-

population differences could be expected since bone remodelling rates variability 

have been shown (Cho et al., 2006; Abdullah et al., 2016). As a consequence, aging 

methods should be scrutinised and continuously updated by validating existing 

equations on target samples to ensure accurate age estimates (Stout and Gehlert, 

1980; Crowder, 2005). Ultimately, as different patterns in bone turnover between 

and within samples may have an impact on the age estimation methods, the 
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development of population-specific standards is recommended to reliably estimate 

age (Cho et al., 2002; Kim et al., 2007; Pavón et al., 2010). 

Forensic anthropology is an interdisciplinary field. Generally, the methods 

developed from physical anthropology are shared by both osteo-archaeological and 

forensic experts. It is obvious that in both fields high accuracy in age estimation is 

sought. However, the final target in a medicolegal investigation does concern the 

positive identification of a particular individual and standardised peer-reviewed 

methodologies with known error rates are demanded in court to assure consistency 

and reliability (Christensen and Crowder, 2009). In general, histological methods are 

suitable for age estimation in adults from modern human remains and historic and 

archaeological assemblages accounting for standard error of the estimate within 5-

12 years and fulfilling the above mentioned court requirements (Ritz-Timme et al., 

2000; Rösing et al., 2007).   

The aging method developed in this research may help forensic experts 

dealing with the identification of unknown skeletal remains. The proposed aging 

equations can be applied depending on the available information about the unknown 

individual (sex and/or ethnic affiliation) in future forensic cases in Crete and in 

Cyprus. After the invasion of Cyprus in 1974, positive identification of exhumed 

skeletons became crucial since there are more than a thousand individuals that 

have yet to be identified, according to the Committee of Missing Persons (www.cmp-

cyprus.org). As with the recent immigration events in Italy, Greece and other 

Mediterranean countries, the large number of deaths related to this transnational 

tragedy requires methods for identifying individuals from these communities. 

Understanding the identification parameters (age determination and sex 

identification) specific for the local Mediterranean populations is a starting point for 

this assessment.  

Summarising, the following conclusions have been reached amending the 

research questions presented along the course of this thesis:  

• Inter-observer errors present different levels of repeatability and agreement. 

It should be considered when assessing specific histomorphometric parameters 

regardless the experience of the observer. Moderate to high agreement between 

observers is reported for most of the parameters used in this research suggesting 

that repeatability standards were achieved. Most of the studies published (e.g. Cho 

et al., 2002) did not explore intra and inter-observer errors, and thus, this thesis 

presents an exhaustive examination not only of the variables themselves but also of 

the practical application of the method. 
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• Sampling location showed no major variability for OPD for the six sampling 

sites along the length of the rib. This suggests that sampling site has no major effect 

in age estimation methods. A larger and more heterogeneous sample is required to 

verify this preliminary observation. The inclusion of other parameters as osteon 

measurements will help to better understand intra-rib variability. The contribution of 

rib sampling location in relation to age estimation was explored in this study 

contributing to future applications of the histological methods considering the 

fragmented nature of costal elements. 

• The existing methods applied to estimate age at death on the Mediterranean 

samples demonstrated that Stout and Paine (1992), Stout et al. (1994) and Cho et 

al. (2002) aging equation did not perform accurately on the Mediterranean sample 

producing a systemic underestimation of the individuals. For these three aging 

techniques, a substantial increase in inaccuracy and bias rates was noticed for 

individuals over 60 years. This fact might be related to the rib cortex reaching OPD 

asymptote at this age. Different age and sex distribution between the reference and 

the target sample, inter-population remodelling rates variability and methodological 

issues were also considered as factors affecting the poor accuracy. Goliath et al. 

(2016) produced the best performance although overestimation of young individuals 

was detected. These results demonstrated the necessity of population-specific 

formulae showing the error that can be introduced if one method developed from a 

reference sample is used to estimate age on a not related target sample. 

• When examining the relationship between the histological parameters and 

age, differences in the histomorphometric variables showed interesting patterns 

when sexes and samples were compared. Conclusions are limited to the fact that 

sub-groups could not be separated due to the small sample size. Further 

investigation of this matter is required to verify whether remodelling rates actually 

differ between and within the sub-groups. 

•  Population-specific formulae were developed for the entire dataset, sub-

datasets separated by sexes (males and females) and sub-datasets separated by 

samples (Cretans and Cypriots). Through model inference a final set of twelve 

models was selected based on prediction power, model fit and overall accuracy. The 

standard error of the estimate ranged from 8 to 13 years and R2 varied from 0.45 to 

0.69 which is in accordance with other histological studies. The formulae generated 

in this thesis had made a contribution to the development of population-specific 

standards for Mediterranean samples offering the possibility of their application in 

future forensic cases. 
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• Differences in the mean OPD values and other histomorphometric variables 

were reported between the Mediterranean sample and other populations. The 

differences could be a function of genetic, environmental, socioeconomic, nutritional 

and pathological factors (or any combination of them) and sample variation and the 

obtained results provided new information about remodelling processes in the 

samples under study. Yet, the current dataset was limiting in exploring these factors 

further. 

Future research to be conducted: 

• The method has still difficult application due to both the ambiguity of 

description of some variables and the means of data collection. Further 

improvement of the technique through computerised methods should be 

investigated. 

• A larger sample is required to verify the differences between sexes and 

samples, and to further examine the accuracy and reliability of the generated 

models. Ideally, the inclusion of young individuals will help to better cover the full 

spectrum of the population and validate the obtained results. 

• The use of other skeletal elements that were proven to be suitable for 

histological age estimation such as the femur is recommended to obtain a full 

picture of remodelling rates between bones and within individuals.  

• Multifactorial approach could improve the accuracy rates obtained in the 

present research. The assessment of age changes on the sternal end may increase 

the prediction power of the method (Stout et al., 1994). 

• As George Box said: Essentially, all models are wrong but some are useful. 

Other statistical approaches such as Bayesian statistics should be explored to 

prevent the under and overestimation produced by regression analysis. 
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APPENDIX A 

Appendix A.1 Ethical Approval 

 

 
SCHOOL OF HISTORY, CLASSICS and ARCHAEOLOGY 

ETHICS STATEMENT 

 
In my view, ethical issues regarding this research project: 
 
have been satisfactorily addressed,  
 
OR 

have arisen and the steps taken to address them are listed below: 
 *delete as appropriate 

 
Name: Julieta Gómez García-Donas  
Matriculation/Personnel Number:  s1061835 
Research Proposal Title: ….Age estimation on two Mediterranean samples using rib histomorphometry    
 

Body (if applicable):  
 
Issues (if none, please state none):  
The material used in this project will be provided by the department of Forensic Sciences of the 

University of Crete, Greece. The material will consist of small segments of ribs extracted from 
individuals of Greek origin that are submitted to autopsy. The sampling of the rib will be stated in the 
autopsy protocol and ethical permission to use this material for research will be granted by the Ethics 
Committee of the Medical School of the University of Crete. Since similar permits have been granted 
previously for projects requiring tissue sampling it is expected that there will be no problem in the 
approval of the project. Additionally the Procurator Fiscal of Scotland has been contacted with an 
enquiry for the use of modern skeletal material from Greece for research. According to his response he 
has no authority on material outwith Scotland thus there seems to be no issue for the use of the 
autopsy samples for the current project. The rib samples constitute biological material thus all the 
appropriate health and safety regulations must be met for the sample preparation, shipping, delivery, 
storage and handling of the material. We will follow the standard protocol of the department of Forensic 
Sciences of the University of Crete, Greece for the shipping of the material, in accordance with the UK 
standards and the material will be stored in deep fridge until the initiation of the thin sectioning. The 
remaining biological material after the handling of the specimens will be disposed according to 
standard protocols for biological material. 

Signature: Julieta Gómez García-Donas 
 
Date: 29 January 2013 
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Appendix A.2 Pathological samples and exclusion criteria 

Pathology*  

Collection Rib Code Age Sex Pathology Comments 

Cretan Baby 4 Male  Sub-adult 

Cretan* CC13 60 Male Gastric Cancer  
abnormal bone formation, 

irregular bone 

Cretan* CC22 55 Male Brain cancer 
Enlarged Haversian 

canal  

Cretan* CC45 64 Female Lung cancer 
Normal appearance; few 

osteons 

Cretan* CC63 83 Male Periostitis 
abnormal bone formation, 

irregular bone 

Cretan* CC203 85 Male Lung infection 
Cutaneous side irregular 

abnormal bone 

Cretan* FC2 68 Male 
hypertension, coronary artery 

disease/Progressive 
supranuclear palsy 

Forensic Case 

Cretan* FC9 57 Male 
Atherosclerosis, Coronary 

stenosis 
Heavy smoker, Alcohol 
abuse, Forensic Case 

Cretan FC10 47 Male 
 

Forensic Case / no-
Greek 

Cretan* FC13 52 Male 
Atherosclerosis, myocardial 

infarction, coronary obstruction 
Forensic Case 

Cretan* FC12 48 Male 
fatty liver,myocardial infarction, 

CAD. 
Forensic Case 

Cretan* FC15 59 Male myocardial infarction, CAD Forensic Case 

Cretan* FC21 49 Male 
Coronary disease, diabetes, 

COPD 

Forensic Case 

Cyprus 13 6 Female 
 

sub-adult 

Cyprus 32 86 Male  taphonomy 

Cyprus 117 55 Male  taphonomy 

Cyprus 118 50 Male  taphonomy 
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*Pathological rib samples 

  

 

 

 

  

CC22 

CC45 

CC63 

CC13 
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CC203
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FC2 

FC9 

FC12 
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All rib samples presented same taphonomic alteration (example) 

  

FC13 

FC15 

FC21 

CY117 
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Appendix A.3 Total study sample individuals per age group 

 

Age 
Group 

Crete (total sample) Greek-Cypriots Study sample 

n   
(Males) 

n  
(Females) 

n   
(Males) 

n 
(Females) 

n   
(Males) 

n 
(Females) 

4-20 y.o. 1 1 0 1 1 2 

21-30 
y.o. 

2 2 0 0 2 2 

31-40 
y.o. 

2 3 0 0 2 3 

41-50 
y.o. 

2 1 2 5 4 6 

51-60 
y.o. 

7 2 5 8 12 10 

61-70 
y.o. 

3 4 7 10 10 14 

71-80 
y.o. 

3 1 1 3 4 4 

81-90 
y.o. 

3 1 2 0 5 1 

< 91 y.o. 0 3 0 3 0 6 

Total  23 18 17 30 40 48 
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APPENDIX B 

Appendix B.1 Intra- and inter-observer error 

Intra-observer error: Bland-Altman plots 
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Inter-observer error (experienced histologist): Bland-Altman plots 
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Inter-observer error (same level of experience observer): Bland-Altman plots 
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Appendix B.2 Histograms (with normal curve fitted) of the variables assessed 

on the sample 
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Appendix B.3 Remaining histological parameters (N.On, N.On.Fg, N.On.Tt, Tt.Ar and Es.Ar) separated by 20 age cohorts 

. 

 

N=11 
         

    
 

19-39 years old Min Max Mean SE SD Skewness Z_Skeweness Kurtosis Z_Kurtosis 
Shapiro-

Wilk 
p-value 

Known Age 19 38 28.27 2.17 7.21 0.08 0.13 -1.55 -1.21 0.91 0.22 

N.On 88 332 187.45 20.48 67.94 0.69 1.06 0.83 0.65 0.96 0.73 

N.On.Fg 23 99 71.54 7.47 24.79 -1.01 -1.52 0.02 0.02 0.88 0.12 

N.On.Tt 111 422 259.00 26.09 86.52 0.02 0.04 0.34 0.27 0.98 0.94 

Tt.Ar 33.72 91.21 67.03 5.94 19.69 -0.22 -0.34 -0.97 -0.76 0.93 0.45 

Es.Ar 13.64 72.89 40.61 5.58 18.51 0.43 0.66 -0.79 -0.62 0.96 0.73 

Grey values indicate not normal distribution of the data; Min=minimum, Max=maximum, SE=standard error, SD=standard deviation 
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Remaining histological parameters (N.On, N.On.Fg, N.On.Tt, Tt.Ar and Es.Ar) separated by 20 age cohorts. 

N=28 
       

    
 

40-59 years old Min Max Mean SE SD Skewness Z_Skeweness Kurtosis Z_Kurtosis 
Shapiro-

Wilk 
p-value 

Known Age 40 58 51.32 1.00 5.29 -0.41 -0.92 -0.92 -1.07 0.93 0.07 

N.On 60 399 190.79 16.02 84.77 0.69 1.56 0.09 0.11 0.95 0.17 

N.On.Fg 47 184 103.64 7.72 40.84 0.31 0.71 -0.88 -1.02 0.94 0.13 

N.On.Tt 125 583 294.43 22.55 119.35 0.54 1.23 -0.27 -0.32 0.94 0.11 

Tt.Ar 26.82 155.25 65.19 5.55 29.39 1.17 2.66 1.72 2.00 0.89 0.01 

Es.Ar 16.06 141.09 42.59 5.12 27.10 2.02 4.58 5.42 6.31 0.81 0.001 

Grey values indicate not normal distribution of the data; Min=minimum, Max=maximum, SE=standard error, SD=standard deviation 

 

N=36 
       

    
 

60-79 years old Min Max Mean SE SD Skewness Z_Skeweness Kurtosis Z_Kurtosis 
Shapiro-

Wilk 
p-value 

Known Age 60 78 67.03 0.75 4.53 0.39 0.984 0.05 0.06 0.95 0.09 

N.On 66 318 164.61 10.13 60.81 0.53 1.349 0.19 0.24 0.96 0.30 

N.On.Fg 60 212 122.14 7.63 45.81 0.42 1.069 -0.99 -1.29 0.94 0.04 

N.On.Tt 129 523 286.75 16.31 97.88 0.53 1.344 0.04 0.05 0.95 0.15 

Tt.Ar 33.50 105.44 62.31 3.47 20.80 0.64 1.627 -0.59 -0.76 0.93 0.02 

Es.Ar 15.07 81.74 45.82 3.00 18.02 0.37 0.945 -0.70 -0.91 0.96 0.18 

Grey values indicate not normal distribution of the data; Min=minimum, Max=maximum, SE=standard error, SD=standard deviation 
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Remaining histological parameters (N.On, N.On.Fg, N.On.Tt, Tt.Ar and Es.Ar) separated by 20 age cohorts. 
 

N=13 
       

    
 

>80 years old Min Max Mean SE SD Skewness Z_Skeweness Kurtosis Z_Kurtosis 
Shapiro-

Wilk 
p-value 

Known Age 80 100 88.31 1.73 6.25 0.51 0.83 -0.51 -0.43 0.94 0.51 

N.On 46 299 144.62 22.08 79.62 0.44 0.72 -0.85 -0.72 0.93 0.32 

N.On.Fg 50 224 120.08 14.91 53.77 0.59 0.97 -0.71 -0.59 0.93 0.33 

N.On.Tt 96 482 264.69 35.95 129.62 0.39 0.66 -1.18 -0.99 0.94 0.41 

Tt.Ar 32.09 107.17 59.36 6.04 21.77 0.76 1.23 0.44 0.37 0.95 0.54 

Es.Ar 14.52 87.79 45.99 5.53 19.95 0.67 1.08 0.41 0.34 0.96 0.70 

Grey values indicate not normal distribution of the data; Min=minimum, Max=maximum, SE=standard error, SD=standard deviation 
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Appendix B.4 Scatter plots representing the association between known age 

and variables for the entire dataset 
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Appendix B.5 Scatter plots representing the association between known age 

and variables for males and females 
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Appendix B.6 Scatter plots representing the association between known age 

and variables for *Cretans and ΔCypriots 
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Appendix B.7 Diagnostic plots for regression models: Simple Linear Models 

 

 
Residuals vs fitted plot, Q-Q plot,  

Scale-location plot, Residuals vs Leverage´s values 
 

 
MODEL 2: 45.44 + 0.136(N.On.Fg) 

 

 
 

  



www.manaraa.com

 

309 
 

MODEL 3: 28.631 + 3.46(OPD(I)) 

 
MODEL 4: 27.935 + 5.158(OPD(F)) 
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MODEL 5: 15.66 + 2.893(OPD) 

MODEL 6: 84.337 – 1.249 (Ct.Ar) 
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MODEL 7: 83.823 – 73.003 (Ct.Ar/Tt.Ar) 
 

 

  

MODEL 8: 97.473 – 1163.81(On.Ar) 
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MODEL 9: 133.224  – 115.24(On.Pm) 
 

  

  

MODEL 10:-445.296 + 555.582(On.Cr) 
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Appendix B.8 Diagnostic plots for regression models: Multiple Linear Models 

 

 
Residuals vs fitted plot, Q-Q plot,  

Scale-location plot, Residuals vs Leverage´s values 
 

 
MODEL 11: 48.77 + 2.0818(OPD) – 644.567(On.Ar) 
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MODEL 12: 73.515 + 1.967(OPD) – 274.568(On.Pm)  

  

  

MODEL 13: -274.568 + 1.982(OPD) + 334.535(On.Cr)  

  

   



www.manaraa.com

 

315 
 

MODEL 14: -193.379 + 1.599(OPD) – 449.111(On.Ar) + 267.398(On.Cr) 

 

 
MODEL 15: -153.132 + 1.577(OPD) – 48.909(On.Pm) + 241.791(On.Cr) 
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MODEL 16: 49.465 + 4.116(OPD(F)) – 469.456(On.Ar)  

 

MODEL 17: 68.487 + 3.909(OPD(F)) – 51.715(On.Pm)  
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MODEL 18: -201.271 + 3.907(OPD(F)) + 260.484(On.Cr)  

  

  

MODEL 19: -149.78 + 3.35(OPD(F)) – 339.413(On.Ar) + 219.594(On.Cr) 
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MODEL 20: -120.205 + 3.281(OPD(F)) – 37.581(On.Pm) + 201.846(On.Cr) 

  

  

MODEL 25: -337.948 + 454.948(On.Cr) – 0.866(Ct.Ar)  
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MODEL 26: -348.847 + 463.584(On.Cr) – 39.534(Ct.Ar/Tt.Ar)  
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Appendix B.9 Regression Models with sex and sample as categorical 

variables 

 

Summary of hierarchical regression for predicting age from Ct.Ar and sex as 
categorical variable. 

 

 
Model 6 + Sex 

Variable B β 

Constant 87.807**   

Ct.Ar -1.309** -0.584 

Sex -4.245 -0.119 

R2 0.324 

F 20.386 

Δ R2 0.013 

Δ F 1.695 

SEE 14.87 

**p-value <.001, N=88, Male is 0 
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Hierarchical regression results for simple models improved accuracy of single histological variables and sample as 
categorical predictor. 

 

 

Model 6 + 
sample   Model 7 + sample   Model 8 + sample   Model 9 + sample 

Variable B β Variable B β Variable B β Variable B β 

Constant 84.401** 
 

Constant 80.915** 
 

Constant 94.92** 
 

Constant 132.247** 
 

Ct.Ar -1.348** -0.60 Ct.Ar/Tt.Ar -74.032** -0.505 On.Ar -1234.279** -0.67 On.Pm -121.118** -0.703 

Sample 9.02* 0.253 Sample 6.064 0.170 Sample 8.991** 0.252 Sample 8.791* 0.247 

R2 0.373 R2 0.248 R2 0.466 R2 0.508 

F 25.270 F 16.270 F 37.148 F 43.796 

Δ R2 0.062 Δ R2 0.029 Δ R2 0.062 Δ R2 0.060 

Δ F 8.429* Δ F 3.395 Δ F 9.896* Δ F 10.295* 

SEE 14.32 SEE 15.40 SEE 13.21 SEE 12.70 

*p-value <.050, **p-value < 0.001; N=88, Crete set as 0. 
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Summary table for hierarchical regression of multiple models and sample as categorical predictor. 

 
Model 21 + 

sample  
Model 22 + sample 

 
Model 23 + 

sample  
Model 24 + sample 

Variable B β Variable B β Variable B β Variable B β 

Constant 96.863** 
 

Constant 96.707** 
 

Constant 125.570** 
 

Constant 129.903** 
 

On.Ar 
-

900.375** 
-

0.492 
On.Ar -1061.64** -0.580 On.Pm -92.782** 

-
0.539 

On.Pm -108.778** 
-

0.63 

Ct.Ar -0.680 
-

0.303 
Ct.Ar/Tt.Ar -22.190 -0.151 Ct.Ar -0.606** 

-
0.270 

Ct.Ar/Tt.Ar -16.662 
-

0.01 

Sample 9.868 0.277 Sample 8.7* 0.244 Sex 9.649** 0.271 Sex 8.605 0.24 

R2 0.506 R2 0.462 R2 0.536 R2 0.498 

F 30.726 F 25.906 F 34.511 F 29.776 

Δ R2 .074 Δ R2 .058 Δ R2 .071 Δ R2 .057 

Δ F 13.048* Δ F 9,364* Δ F 13.305** Δ F 9.871** 

SEE 12.60 SEE 13.10 SEE 12.18 SEE 12.67 

*p-value <.050, **p-value < 0.001; N=88. Crete set as 0
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Appendix B.10 Simple and Multiple Linear Models by SEX 

 

 
Males 

 
Residuals vs fitted plot, Q-Q plot, 

 Scale-location plot, Residuals vs Leverage´s values 
 
 

MODEL 27: 15.15 + 2.904(OPD)  
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MODEL 28: -402.715 + 507.025(On.Cr)  

 

MODEL 29: -247.98 + 2.04(OPD) + 302.931(On.Cr)  
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Females 

MODEL 30: 23.511 + 5.753(OPD(F) 

  

  

MODEL 31: 95.428 – 1.984(Ct.Ar) 
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MODEL 32:128.742 – 74.338(On.Pm) – 1.220(Ct.Ar) 

 

MODEL 33: -276.939  – 399.886(On.Cr) – 1.453(Ct.Ar) 
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MODEL 34: 52.44 + 4.21(OPD(F)) – 1.080(Ct.Ar) 
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Appendix B.11 Simple and Multiple Linear Models for CYPRIOTS 

 

 
 

Residuals vs fitted plot, Q-Q plot, Scale-location plot, Residuals vs Leverage´s 
values 

 

MODEL 35: 32.66+ 4.417(OPD(F))  
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MODEL 36: 21.36+ 2.549(OPD)  

 

MODEL 37: 89.238 – 80.95(Ct.Ar/Tt.Ar) 
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MODEL 38: 136.234  – 113.681(On.Pm) 

 

MODEL 39: 78.819 + 2.97(OPD(F) – 56.171(On.Pm) 
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MODEL 40: 85.982 + 1.507(OPD) – 73.831(On.Pm) 

  

  

MODEL 41: 131.744 – 86.248(On.Pm) – 40.518(Ct.Ar/Tt.Ar) 

  

  


